6,006 research outputs found

    Neogene plate tectonic reconstructions and geodynamics of North Island sedimentary basins: Implications for the petroleum systems

    Get PDF
    Although the modern Australia-Pacific plate boundary through New Zealand is relatively straight, there have been significant changes in its geometry during the Neogene. Within the North Island sector there has been a fundamental transition from an Alpine Fault translation/transpression regime to a Hikurangi margin subduction regime. This transition has been accompanied by the southward encroachment of the edge of the Pacific plate oceanic slab into Australia lithosphere, shortened and thickened along its eastern margin as a consequence of the prior Alpine Fault transpression, the process now operating in South Island. The response of the Australia lithosphere at the surface to the emplacement of the subducted slab at depth, has differed in the East Coast forearc region versus the foreland in western North Island, where the depth to the slab is greater and there has been a characteristic southward migration of depocentres pinned to the leading edge of the slab. The recent publication of new rotation parameters for relative motion of the Australia, Antarctic and Pacific plates, have provided key new data from which to plot the successive emplacement history of the Pacific slab beneath North Island, thus enabling the comparisons to be made with basin stratigraphy and geohistory. These data also constrain the age of subduction initiation at various points along the present trend of the Hikurangi Trough, identifying a younging of subduction initiation to the southwest. An implication of this younging direction is that the modern accretion¬ary prism south of Cape Kidnappers can be no older than late Miocene (c. 11 Ma). The focus of this paper is on new ideas about the tectonic development of North Island and its basins, which have implications for hydrocarbon exploration

    SIR-A imagery in geologic studies of the Sierra Madre Oriental, northeastern Mexico. Part 1 (Regional stratigraphy): The use of morphostratigraphic units in remote sensing mapping

    Get PDF
    SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region

    Evidence for late Quaternary surface rupture along the Leech River fault near Victoria, British Columbia

    Full text link
    New surficial and bedrock mapping and paleoseismic trenching of the Leech River fault provide the first evidence for Quaternary surface-rupturing earthquakes in southwestern British Columbia, Canada. The Leech River fault extends ~60 km across southern Vancouver Island, from Victoria, British Columbia to the Pacific shoreline and is a terrane-bounding structure separating the Pacific Rim Terrane from basalts of the Eocene Crescent Terrane. The fault is not currently listed in the active fault catalogue for Canada, and post-Eocene-Oligocene slip had not been documented prior to this study. However, based on new field mapping aided by lidar topography, we identify >60 individual, sub-parallel, linear scarps, sags and swales occurring in semi-continuous, en echelon arrays that offset bedrock and late Pleistocene-Holocene deposits. Field observations of these scarps confirm that they are not the result of anthropogenic, glacial or landslide processes, and in several places the scarps are located above exposures of faulted bedrock with brittle fracture networks and gouge. At a site ~5 km west of Leechtown, British Columbia, we estimate ~6 m of dip-slip reverse displacement of a post-Last Glacial Maximum (<~15 ka) colluvial surface and ~4 m of displacement of intervening channels. Two paleoseismic trenches at this site reveal (1) Jurassic Leech River Schist in fault contact with latest Pleistocene loess and colluvium, and (2) latest Pleistocene till thrust over post-glacial colluvium. These trenches preserve a record of at least three, and possibly four, earthquakes since the Last Glacial Maximum, each with ~1 m vertical displacement. We interpret the active Leech River fault as a 500–1000 m-wide, steeply dipping fault zone that accommodates transpression across the northern Cascadia forearc. The onshore trace of the Leech River fault may continue offshore to the east, south of Victoria, and may be kinematically linked to active faults in western Washington (e.g., Devils Mountain and Southern Whidbey Island faults). The Leech River fault is likely one of several active crustal faults that should be considered in seismic hazard assessments for southern British Columbia and northwestern Washington

    Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China : Kinematics and 40Ar/39Ar geochronological constraints

    Get PDF
    Structural and 40Ar/39Ar data from the Yunkaidashan Belt document kinematic and tectonothermal characteristics of early Mesozoic Indosinian orogenesis in the southern part of the South China Block. The Yunkaidashan Belt is tectonically divided from east to west into the Wuchuang-Sihui shear zone, Xinyi-Gaozhou block, and the Fengshan-Qinxi shear zone. Indosinian structural elements ascribed to the Indosinian orogeny include D2 and D3 deformation. The early D2 phase is characterized by folding and thrusting with associated foliation and lineation development, related to NW-SE transpression under amphibolite- to greenschist-facies conditions. This event is heterogeneously overprinted by D3 deformation characterized by a gentle-dipping S-3 foliation, subhorizontally to shallowly plunging L3 lineation, some reactived-D2 folds and low-angle normal faults. The D3 fabrics suggest a sinistral transtensional regime under greenschist-facies metamorphism. The timing of the D2 and D3 events have been constrained to the early to middle Triassic (similar to 248-220 Ma) and late Triassic (similar to 220-200 Ma) respectively on the basis of 40Ar/39Ar geochronology and regional geological relations. The change from oblique thrusting (D2) to sinistral transtension (D3) may reflect oblique convergence and crustal thickening followed by relaxation of the overthickened crust. In combination with the regional relations from Xuefengshan to Yunkaidashan and on to Wuyishan, the early phase of the Indosinian orogeny constituted a large-scale positive flower structure and is related to the intracontinental convergence during the assembly of Pangea in which the less competent South China Orogen was squeezed between the more competent North China and Indosinian Blocks.Peer reviewe

    Patrones complejos de reparto de la deformación evaluados mediante modelos de transpresión triclínica. Análisis cinemático preliminar del macizo del Valle de Abdalajís (zona de cizalla del Torcal, zonas externas Béticas)

    Get PDF
    Complex strain partitioning patterns are very common in the continental crust. They are often related to the kinematics of three-dimensional deformations and hence, can be analysed using transpression models. In this work, the strain partitioning pattern of the Valle de Abdalajís massif is evaluated with a model of triclinic transpression with oblique extrusion. Structures and kinematics are compared with the output of the model.We present preliminary results suggesting that the far-field vector responsible for bulk deformation at the studied area would be oriented NO75ºE-N144ºE, which is compatible with that of the neighbouring Torcal de Antequera massif. Bulk deformation affecting the Valle de Abdalajís massif was partitioned into strike-slip simple shear at the southern boundary and a triclinic transpressional component within the massif. Differences in strain partitioning pattern between these two massifs are unlikely related to flow partitioningLos patrones complejos de reparto de la deformación son muy comunes en la corteza continental. Suelen relacionarse con la cinemática de deformaciones tridimensionales y pueden analizarse mediante modelos de transpresión. En este trabajo, se evalúa el patrón de reparto del macizo del Valle de Abdalajís con el modelo de transpresión triclínica con extrusión oblicua. Estos resultados sugieren que el vector responsable de la deformación de la zona estudiada tendría una orientación NO75ºE-N144ºE, rango que es compatible con la orientación del mismo vector para el vecino macizo del Torcal de Antequera. La deformación que afectó al macizo del Valle de Abdallajís se repartió entre una componente de cizalla simple lateral en el límite sur y una componente de transpresión triclínica en la parte interna del macizo. Es improbable que las diferencias en los patrones de reparto de ambos macizos se puedan relacionar con un reparto del fluj

    The Geology as an indispensable tool for optimizing the exploration of dimension Stones

    Get PDF
    Like any Geological Resource, the Dimension Stones can only be exploited where they occur. How they occur is a reflection of geological history that presided over its formation. Their nature determines the mode of deposit and therefore it’s potential to be exploited as ornamental stone. The geological setting of the Portuguese marbles became a key factor in the optimization of its exploitation, two ductile deformation phases must be consider, which originates the complex folded metamorphic layering. At least three fracturing systems are responsible for the high segmentation of the marbles in fragile deformation conditions and that must also be considered. Together these geological constraints lead to a really low production ratio (3% - 12%). These low efficiency productions emphasized the emergence of the geological knowledge of individual quarries in order to optimize is exploitation. Until recent years, with high prices for the Portuguese marbles the companies haven’t been concerned with the geological knowledge of its quarries, but now that an economic crisis is installed in the sector, basic geological studies in the quarries are mandatory and could save thousands of euros for each company

    Guadalupe pluton–Mariposa Formation age relationships in the southern Sierran Foothills: Onset of Mesozoic subduction in northern California?

    Get PDF
    We report a new 153 ± 2 Ma SIMS U-Pb date for zircons from the hypabyssal Guadalupe pluton which crosscuts and contact metamorphoses upper crustal Mariposa slates in the southern Sierra. A ~950 m thick section of dark metashales lies below sandstones from which clastic zircons were analyzed at 152 ± 2 Ma. Assuming a compacted depositional rate of ~120 m/Myr, accumulation of Mariposa volcanogenic sediments, which overlie previously stranded Middle Jurassic and older ophiolite + chert-argillite belts in the Sierran Foothills, began no later than ~160 Ma. Correlative Oxfordian-Kimmeridgian strata of the Galice Formation occupy a similar position in the Klamath Mountains. We speculate that the Late Jurassic was a time of transition from (1) a mid-Paleozoic–Middle Jurassic interval of mainly but not exclusively strike-slip and episodic docking of oceanic terranes; (2) to transpressive plate underflow, producing calcalkaline igneous arc rocks ± outboard blueschists at ~170–150 Ma, whose erosion promoted accumulation of the Mariposa-Galice overlap strata; (3) continued transpressive underflow attending ~200 km left-lateral displacement of the Klamath salient relative to the Sierran arc at ~150–140 Ma and development of the apparent polar wander path cusps for North and South America; and (4) then nearly orthogonal mid and Late Cretaceous convergence commencing at ~125–120 Ma, during reversal in tangential motion of the Pacific plate. After ~120 Ma, nearly head-on subduction involving minor dextral transpression gave rise to voluminous continent-building juvenile and recycled magmas of the Sierran arc, providing the erosional debris to the Great Valley fore arc and Franciscan trench

    Spatio-temporal evolution of intraplate strike-slip faulting: the Neogene-Quaternary Kuh-e-Faghan Fault, Central Iran

    Get PDF
    Central Iran provides an ideal region to study the long-term morphotectonic response to the nucleation and propagation of intraplate faulting. In this study, a multidisciplinary approach that integrates structural and stratigraphic field investigations with apatite (U+Th)/He (AHe) thermochronometry is used to reconstruct the spatio-temporal evolution of the Kuh-e-Faghan Fault (KFF) in northeastern Central Iran. The KFF is a narrow, ca. 80 km long, deformation zone that consists of three main broadly left stepping, E-W trending, dextral fault strands that cut through the Mesozoic-Paleozoic substratum and the Neogene-Quaternary sedimentary cover. The AHe thermochronometry results indicate that the intra-fault blocks along the KFF experienced two major episodes of fault-related exhumation at ~18 Ma and ~4 Ma. The ~18 Ma faulting/exhumation episode is chiefly recorded by the structure and depositional architecture of the Neogene deposits along the KFF. A source-to-sink scenario can be reconstructed for this time frame, where topographic growth caused the synchronous erosion/exhumation of the pre-Neogene units and deposition of the eroded material in the surrounding fault-bounded continental depocenters. Successively, the KFF gradually entered a period of relative tectonic quiescence and, probably, of regional subsidence during which a thick pile of fine-grained onlapping sediments were deposited. This may have caused resetting of the He ages of apatite in the pre-Neogene and the basal Neogene successions. The ~4 Ma faulting episode caused the final exhumation of the fault system, resulting in the current fault zone and topography. The two fault-related exhumation episodes fit with the regional early Miocene collision-enhanced uplift/exhumation, and the late Miocene–early Pliocene widespread tectonic reorganization of the Iranian plateau. The reconstructed long term, spatially and temporally punctuated fault system evolution in intraplate Central Iran during Neogene-Quaternary times may reflect states of far-field stress changes at the collisional boundaries
    corecore