411,712 research outputs found

    Broad role for YBX1 in defining the small noncoding RNA composition of exosomes.

    Get PDF
    RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5' terminal oligopyrimidine (5' TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data.

    Get PDF
    Transfer RNA fragments (tRFs) are an established class of constitutive regulatory molecules that arise from precursor and mature tRNAs. RNA deep sequencing (RNA-seq) has greatly facilitated the study of tRFs. However, the repeat nature of the tRNA templates and the idiosyncrasies of tRNA sequences necessitate the development and use of methodologies that differ markedly from those used to analyze RNA-seq data when studying microRNAs (miRNAs) or messenger RNAs (mRNAs). Here we present MINTmap (for MItochondrial and Nuclear TRF mapping), a method and a software package that was developed specifically for the quick, deterministic and exhaustive identification of tRFs in short RNA-seq datasets. In addition to identifying them, MINTmap is able to unambiguously calculate and report both raw and normalized abundances for the discovered tRFs. Furthermore, to ensure specificity, MINTmap identifies the subset of discovered tRFs that could be originating outside of tRNA space and flags them as candidate false positives. Our comparative analysis shows that MINTmap exhibits superior sensitivity and specificity to other available methods while also being exceptionally fast. The MINTmap codes are available through https://github.com/TJU-CMC-Org/MINTmap/ under an open source GNU GPL v3.0 license

    Use of RNA secondary structure for evolutionary relationships : investigating RNase P and RNase MRP : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University, New Zealand

    Get PDF
    Bioinformatics is applied here to examine whether RNA secondary structure data can reflect distant evolutionary relationships. This is important when there is little confidence in sequence data such as when looking at the evolution of RNase MRP (MRP). RNase P (P) and RNase MRP (MRP) are ribonucleoproteins (RNPs) that are involved in RNA processing and due to functional and secondary structure similarities, are thought to be evolutionary related. P activity is found in all cells, and fits the criteria for inclusion in the RNA world (Jeffares et al. 1998). MRP is found only in eukaryotes with essential functions in both the nucleus and mitochondria. The RNA components of P and MRP (pRNA and mrpRNA) cannot be aligned with any certainty, which leads to a lack of confidence in any phylogenetic trees constructed from them. If MRP evolved from P only in eukaryotes then it is an exception to the general process of the transfer of catalytic activity from RNA, to ribonucleoproteins, to proteins (Jeffares et al. 1998). An alternative possibility that MRP evolved with P in the RNA world (and has since been lost from all but the eukaryotes) is raised and examined. Quantitative comparisons of the pRNA and mrpRNA biological secondary structures have found that the third possibility of an organellar origin of MRP is unlikely Results show that biological secondary structure can be used in the evaluation of an evolutionary relatedness between MRP and P and may be extended to other catalytic RNA molecules. Although there are many protein families, this may be the first evidence of the existence of a family of RNA molecules, although it would be a very small family. Secondary structures derived with folding programs from pRNA and mrpRNA sequences are examined for use in the characterisation of catalytic RNA sequences. The high AT content in organellar genomes may hinder the identification of their catalytic RNA sequences. A search strategy is developed here to address this problem and is used to identify putative pRNA sequences in the chloroplast genomes of four green plants. A maize chloroplast pRNA-like sequence is examined in more detail and shows many characteristics seen in known pRNA sequences. Folding programs show some potential for the characterisation of possible catalytic RNA sequences with only a small bias in the results due to sequence length and AT content

    Small RNAs and extracellular vesicles in filarial nematodes: from nematode development to diagnostics

    Get PDF
    Parasitic nematodes have evolved sophisticated mechanisms to communicate with their hosts in order to survive and successfully establish an infection. The transfer of RNA within extracellular vesicles (EVs) has recently been described as a mechanism that could contribute to this communication in filarial nematodes. It has been shown that these EVs are loaded with several types of RNAs, including microRNAs, leading to the hypothesis that parasites could actively use these molecules to manipulate host gene expression and to the exciting prospect that these pathways could result in new diagnostic and therapeutic strategies. Here we review the literature on the diverse RNAi pathways that operate in nematodes and more specifically our current knowledge of extracellular RNA (exRNA) and EVs derived from filarial nematodes in vitro and within their hosts. We further detail some of the issues and questions related to the capacity of RNA-mediated communication to function in parasite-host interactions and the ability of exRNA to enable us to distinguish and detect different nematode parasites in their hosts

    YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.

    Get PDF
    Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes

    Controlled evolution of an RNA enzyme

    Get PDF
    It is generally thought that prior to the origin of protein synthesis, life on earth was based on self-replicating RNA molecules. This idea has become especially popular recently due to the discovery of catalytic RNA (ribozymes). RNA has both genotypic and phenotypic properties, suggesting that it is capable of undergoing Darwinian evolution. RNA evolution is likely to have played a critical role in the early history of life on earth, and thus is important in considering the possibility of life elsewhere in the solar system. We have constructed an RNA-based evolving system in the laboratory, combining amplification and mutation of an RNA genotype with selection of a corresponding RNA phenotype. This system serves as a functional model of a primitive organism. It can also be used as a tool to explore the catalytic potential of RNA. By altering the selection constraints, we are attempting to modify the substrate specificity of an existing ribozyme in order to develop ribozymes with novel catalytic function. In this way, we hope to gain a better understanding of RNA's catalytic versatility and to assess its suitability for the role of primordial catalyst. All of the RNA enzymes that are known to exist in contemporary biology carry out cleavage/ligation reactions involving RNA substrates. The Tetrahymena ribozyme, for example, catalyzes phosphoester transfer between a guanosine containing and an oligopyrimidine containing substrate. We tested the ability of mutant forms of the Tetrahymena ribozyme to carry out a comparable reaction using DNA, rather than RNA substrate. An ensemble of structural variants of the ribozyme was prepared and tested for their ability to specifically cleave d(GGCCCTCT-A3TA3TA) at the phosphodiester bond following the sequence CCCTCT. We recovered a mutant form of the enzyme that cleaves DNA more efficiently than does the wild-type. Beginning with this selected mutant we have now scattered random mutations throughout the ribozyme and have begun an evolutionary search to further expand the catalytic repertoire of RNA
    corecore