23,030 research outputs found

    Regenerative Medicine for the Aging Brain

    Get PDF
    In the central nervous system, cholinergic and dopaminergic (DA) neurons are among the cells most susceptible to the deleterious effects of age. Thus, the basal forebrain cholinergic system is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer’s disease (AD). Parkinson’s disease (PD), a degeneration of nigro-striatal DA neurons is the most conspicuous reflection of the vulnerability of DA neurons to age. In this context, cell reprogramming offers novel therapeutic possibilities for the treatment of these devastating diseases. In effect, the generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the overexpression of a few embryonic transcription factors (TF). This discovery fundamentally widened the research horizon in the fields of disease modeling and regenerative medicine. Although it is possible to re-differentiate iPSCs to specific somatic cell types, the tumorigenic potential of contaminating iPSCs that failed to differentiate, increases the risk for clinical application of somatic cells generated by this procedure. Therefore, reprogramming approaches that bypass the pluripotent stem cell state are being explored. A method called lineage reprogramming has been recently documented. It consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific TF or microRNAs. Another approach, termed direct reprogramming, features several advantages such as the use of universal TF system and the ability to generate a rejuvenated multipotent progenitor cell population, able to differentiate into specific cell types in response to a specific differentiation factors. These novel approaches offer a new promise for the treatment of pathologies associated with the loss of specific cell types as for instance, nigral DA neurons (in PD) or basal forebrain cholinergic neurons in the early stages of AD. The above topics are reviewed here.Fil: López León, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Reggiani, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentin

    Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations

    Get PDF
    Multipotent stem cells are clonal cells that self-renew as well as differentiate to regenerate adult tissues. Whereas stem cells and their fates are known by unique genetic marker studies, the fate and function of these cells are best studied by their prospective isolation. This review is about the properties of various highly purified tissue-specific multipotent stem cells and purified oligolineage progenitors. We contend that unless the stem or progenitor cells in question have been purified to near homogeneity, one cannot know whether their generation of expected (or unexpected) progeny is a property of a known cell type. It is interesting that in the hematopoietic system the only long-term self-renewing cells in the stem and progenitors pool are the hematopoietic stem cells. This fact is discussed in the context of normal and leukemic hematopoiesis

    Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction

    Get PDF
    Adipocyte differentiation of bovine adipose-derived stem cells (ASC) was induced by foetal bovine serum (FBS), biotin, pantothenic acid, insulin, rosiglitazone, dexamethasone and 3-isobutyl-1-methylxanthine, followed by incubation in different media to test the influence of ascorbic acid (AsA), bovine serum lipids (BSL), FBS, glucose and acetic acid on transdifferentiation into functional adipocytes. Moreover, different culture plate coatings (collagen-A, gelatin-A or poly-L-lysine) were tested. The differentiated ASC were subjected to Nile red staining, DAPI staining, immunocytochemistry and quantitative reverse transcription PCR (for NT5E, THY1, ENG, PDGFRα, FABP4, PPARγ, LPL, FAS, GLUT4). Nile red quantification showed a significant increase in the development of lipid droplets in treatments with AsA and BSL without FBS. The presence of BSL induced a prominent increase in FABP4 mRNA abundance and in FABP4 immunofluorescence signals in coincubation with AsA. The abundance of NT5E, ENG and THY1 mRNA decreased or tended to decrease in the absence of FBS, and ENG was additionally suppressed by AsA. DAPI fluorescence was higher in cells cultured in poly-L-lysine or gelatin-A coated wells. In additional experiments, the multi-lineage differentiation potential to osteoblasts was verified in medium containing ß-glycerophosphate, dexamethasone and 1,25-dihydroxyvitamin D3 using alizarin red staining. In conclusion, bovine ASC are capable of multi-lineage differentiation. Poly-L-lysine or gelatin-A coating, the absence of FBS, and the presence of BSL and AsA favour optimal transdifferentiation into adipocytes. AsA supports transdifferentiation via a unique role in FABP4 induction, but this is not linearly related to the primarily BSL-driven lipid accumulation

    Role of galectin-3 in bone cell differentiation, bone pathophysiology and vascular osteogenesis

    Get PDF
    Galectin-3 is expressed in various tissues, including the bone, where it is considered a marker of chondrogenic and osteogenic cell lineages. Galectin-3 protein was found to be increased in the differentiated chondrocytes of the metaphyseal plate cartilage, where it favors chondrocyte survival and cartilage matrix mineralization. It was also shown to be highly expressed in differentiating osteoblasts and osteoclasts, in concomitance with expression of osteogenic markers and Runt-related transcription factor 2 and with the appearance of a mature phenotype. Galectin-3 is expressed also by osteocytes, though its function in these cells has not been fully elucidated. The effects of galectin-3 on bone cells were also investigated in galectin-3 null mice, further supporting its role in all stages of bone biology, from development to remodeling. Galectin-3 was also shown to act as a receptor for advanced glycation endproducts, which have been implicated in age-dependent and diabetes-associated bone fragility. Moreover, its regulatory role in inflammatory bone and joint disorders entitles galectin-3 as a possible therapeutic target. Finally, galectin-3 capacity to commit mesenchymal stem cells to the osteoblastic lineage and to favor transdifferentiation of vascular smooth muscle cells into an osteoblast-like phenotype open a new area of interest in bone and vascular pathologies

    The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms

    Get PDF
    Objectives: The corticotrophin-releasing factor (CRF)/urocortin system is expressed in the adipose tissue of mammals, but its functional role in this tissue remains unknown. Methods: Pharmacological manipulation of the activity of CRF receptors, CRF1 and CRF2, was performed in 3T3L1 white pre-adipocytes and T37i brown pre-adipocytes during in vitro differentiation. The expression of genes of the CRF/urocortin system and of markers of white and brown adipocytes was evaluated along with mitochondrial biogenesis and cellular oxygen consumption. Metabolic evaluation of corticosterone-deficient or supplemented Crhr1-null (Crhr1−/−) mice and their wild-type controls was performed along with gene expression analysis carried out in white (WAT) and brown (BAT) adipose tissues. Results: Peptides of the CRF/urocortin system and their cognate receptors were expressed in both pre-adipocyte cell lines. In vitro pharmacological studies showed an inhibition of the expression of the CRF2 pathway by the constitutive activity of the CRF1 pathway. Pharmacological activation of CRF2 and, to a lesser extent, inhibition of CRF1 signaling induced molecular and functional changes indicating transdifferentiation of white pre-adipocytes and differentiation of brown pre-adipocytes. Crhr1−/− mice showed increased expression of CRF2 and its agonist Urocortin 2 in adipocytes that was associated to brown conversion of WAT and activation of BAT. Crhr1−/− mice were resistant to diet-induced obesity and glucose intolerance. Restoring physiological circulating corticosterone levels abrogated molecular changes in adipocytes and the favorable phenotype of Crhr1−/− mice. Conclusions: Our findings suggest the importance of the CRF2 pathway in the control of adipocyte plasticity. Increased CRF2 activity in adipocytes induces browning of WAT, differentiation of BAT and is associated with a favorable metabolic phenotype in mice lacking CRF1. Circulating corticosterone represses CRF2 activity in adipocytes and may thus regulate adipocyte physiology through the modulation of the local CRF/urocortin system. Targeting CRF receptor signaling specifically in the adipose tissue may represent a novel approach to tackle obesity

    The effects of growth factors on multicellular spheroids formed by chick embryonic retinal cells

    Get PDF
    Retinal cells from chick embryos aged 7.5 days of gestation were cultured for two months in a non-adherent suspension culture dish to study the effects of growth factors and co-culture with retinal pigment epithelial cells on their differentiation. Dissociated retinal cells became cellular aggregates (multicellular spheroids) within a day, and rosettes were formed in the spheroids after 2 days. Ultrastructurally, neurons of the rosettes developed connecting cilia, ellipsoids (accumulation of mitochondria), and external limiting membrane, indicative of their differentiation into photoreceptor cells. Epidermal growth factor enhanced the expression of rhodopsin by rosette-forming neurons, while basic fibroblast growth factor induced the growth of Mueller cells at 4 weeks, and their transdifferentiation into lens-epithelial-like cells at 8 weeks. Co-culture of retinal cells with retinal pigment epithelial cells enhanced the formation of rosettes in spheroids. Multicellular spheroids formed in a dish for suspension culture would provide a convenient in vitro system to examine differentiation and transdifferentiation of the retina.</p
    corecore