1,450 research outputs found

    An Innovative Approach to Achieve Compositionality Efficiently using Multi-Version Object Based Transactional Systems

    Full text link
    In the modern era of multicore processors, utilizing cores is a tedious job. Synchronization and communication among processors involve high cost. Software transaction memory systems (STMs) addresses this issues and provide better concurrency in which programmer need not have to worry about consistency issues. Another advantage of STMs is that they facilitate compositionality of concurrent programs with great ease. Different concurrent operations that need to be composed to form a single atomic unit is achieved by encapsulating them in a single transaction. In this paper, we introduce a new STM system as multi-version object based STM (MVOSTM) which is the combination of both of these ideas for harnessing greater concurrency in STMs. As the name suggests MVOSTM, works on a higher level and maintains multiple versions corresponding to each key. We have developed MVOSTM with the unlimited number of versions corresponding to each key. In addition to that, we have developed garbage collection for MVOSTM (MVOSTM-GC) to delete unwanted versions corresponding to the keys to reduce traversal overhead. MVOSTM provides greater concurrency while reducing the number of aborts and it ensures compositionality by making the transactions atomic. Here, we have used MVOSTM for the list and hash-table data structure as list-MVOSTM and HT- MVOSTM. Experimental results of list-MVOSTM outperform almost two to twenty fold speedup than existing state-of-the-art list based STMs (Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-OSTM). HT-MVOSTM shows a significant performance gain of almost two to nineteen times better than existing state-of-the-art hash-table based STMs (ESTM, RWSTMs, HT-MVTO, and HT-OSTM). MVOSTM with list and hash-table shows the least number of aborts among all the existing STM algorithms. MVOSTM satisfies correctness-criteria as opacity.Comment: 35 pages, 23 figure

    The Transactional Conflict Problem

    Full text link
    The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins" and "requestor aborts" implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures

    Bipolar Proof Nets for MALL

    Full text link
    In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspon- dence between this paradigm and those more pragmatic ones inspired to transactional or distributed systems. In particular we show that the construction of additive proof nets can be interpreted as a model for super-ACID (or co-operative) transactions over distributed transactional systems (typi- cally, multi-databases).Comment: Proceedings of the "Proof, Computation, Complexity" International Workshop, 17-18 August 2012, University of Copenhagen, Denmar

    Prescriptions for Excellence in Health Care Summer 2012 Download Full PDF

    Get PDF
    corecore