1,627,418 research outputs found
Time Delay Feedback Control based Chaos Stabilization in Current Mode Controlled DC Drive System
This paper focuses on delay feedback control scheme to eliminate chaos in a current mode controlled DC drive system. The delay feedback method is applied for the current mode DC drive system which exhibits chaotic behavior for some parameter variations to control the chaos in DC drive system. Firstly, the change of system behavior from normal to chaotic operation is shown by changing some parameters. To control the chaos in current mode DC drive system, the controller designed based on time delay feedback control method is applied to DC drive system which works in chaotic regime. It is showed that the behavior of system changes from chaotic regimes to normal operation by applying the time delay feedback control
A CMOS analog continuous-time delay line with adaptive delay-time control
A CMOS analog continuous-time delay line composed of cascaded first-order current-domain all-pass sections is discussed. Each all-pass section consists of CMOS transistors and a single capacitor. The operation is based on the square-law characteristic of an MOS transistor in saturation. The delay time per section can either be controlled by an external voltage or locked to an external reference frequency by means of a control system which features a large capture range. Experimental verification has been performed on two setups: an integrated cascade of 26 identical all-pass sections and a frequency-locking system breadboard built around two identical on-chip all-pass section
Variable-delay feedback control of unstable steady states in retarded time-delayed systems
We study the stability of unstable steady states in scalar retarded
time-delayed systems subjected to a variable-delay feedback control. The
important aspect of such a control problem is that time-delayed systems are
already infinite-dimensional before the delayed feedback control is turned on.
When the frequency of the modulation is large compared to the system's
dynamics, the analytic approach consists of relating the stability properties
of the resulting variable-delay system with those of an analogous distributed
delay system. Otherwise, the stability domains are obtained by a numerical
integration of the linearized variable-delay system. The analysis shows that
the control domains are significantly larger than those in the usual
time-delayed feedback control, and that the complexity of the domain structure
depends on the form and the frequency of the delay modulation.Comment: 13 pages, 8 figures, RevTeX, accepted for publication in Physical
Review
Effect of time delay on feedback control of a flashing ratchet
It was recently shown that the use of feedback control can improve the
performance of a flashing ratchet. We investigate the effect of a time delay in
the implementation of feedback control in a closed-loop collective flashing
ratchet, using Langevin dynamics simulations. Surprisingly, for a large
ensemble, a well-chosen delay time improves the ratchet performance by allowing
the system to synchronize into a quasi-periodic stable mode of oscillation that
reproduces the optimal average velocity for a periodically flashing ratchet.
For a small ensemble, on the other hand, finite delay times significantly
reduce the benefit of feedback control for the time-averaged velocity, because
the relevance of information decays on a time scale set by the diffusion time
of the particles. Based on these results, we establish that experimental use of
feedback control is realistic.Comment: 6 pages, 6 figures, to appear in Europhysics Letter
Accessibility of Nonlinear Time-Delay Systems
A full characterization of accessibility is provided for nonlinear time-delay systems. It generalizes the rank condition which is known for weak controllability of linear time-delay systems, as well as the celebrated geometric approach for delay-free nonlinear systems and the characterization of their accessibility. Besides, fundamental results are derived on integrability and basis completion which are of major importance for a number of general control problems for nonlinear time-delay systems. They are shown to impact preconceived ideas about canonical forms for nonlinear time-delay systems
Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance
The paper presents a Stateflow based network test-bed to validate real-time
optimal control algorithms. Genetic Algorithm (GA) based time domain
performance index minimization is attempted for tuning of PI controller to
handle a balanced lag and delay type First Order Plus Time Delay (FOPTD)
process over network. The tuning performance is validated on a real-time
communication network with artificially simulated stochastic delay, packet loss
and out-of order packets characterizing the network.Comment: 6 pages, 12 figure
Solid state variable time delay
Variable time delay line does not require use of a magnetic field to control a time delay, and can both amplify and delay a signal. Device is inexpensive and space saving, it does not require mecanically moving components, eliminating detrimental vibrations in a sensitive environment
Control of unstable steady states in neutral time-delayed systems
We present an analysis of time-delayed feedback control used to stabilize an
unstable steady state of a neutral delay differential equation. Stability of
the controlled system is addressed by studying the eigenvalue spectrum of a
corresponding characteristic equation with two time delays. An analytic
expression for the stabilizing control strength is derived in terms of original
system parameters and the time delay of the control. Theoretical and numerical
results show that the interplay between the control strength and two time
delays provides a number of regions in the parameter space where the
time-delayed feedback control can successfully stabilize an otherwise unstable
steady state.Comment: 11 pages, 8 figure
Delay-Based Controller Design for Continuous-Time and Hybrid Applications
Motivated by the availability of different types of delays in embedded systems and biological circuits, the objective of this work is to study the benefits that delay can provide in simplifying the implementation of controllers for continuous-time systems. Given a continuous-time linear time-invariant (LTI) controller, we propose three methods to approximate this controller arbitrarily precisely by a simple controller composed of delay blocks, a few integrators and possibly a unity feedback. Different problems associated with the approximation procedures, such as finding the optimal number of delay blocks or studying the robustness of the designed controller with respect to delay values, are then investigated. We also study the design of an LTI continuous-time controller satisfying given control objectives whose delay-based implementation needs the least number of delay blocks. A direct application of this work is in the sampled-data control of a real-time embedded system, where the sampling frequency is relatively high and/or the output of the system is sampled irregularly. Based on our results on delay-based controller design, we propose a digital-control scheme that can implement every continuous-time stabilizing (LTI)
controller. Unlike a typical sampled-data controller, the hybrid controller introduced here -— consisting of an ideal sampler, a digital controller, a number of modified second-order holds and possibly a unity feedback -— is robust to sampling jitter and can operate at arbitrarily high sampling frequencies without requiring expensive, high-precision computation
- …
