349,560 research outputs found
Parameter mismatches,variable delay times and synchronization in time-delayed systems
We investigate synchronization between two unidirectionally linearly coupled
chaotic non-identical time-delayed systems and show that parameter mismatches
are of crucial importance to achieve synchronization. We establish that
independent of the relation between the delay time in the coupled systems and
the coupling delay time, only retarded synchronization with the coupling delay
time is obtained. We show that with parameter mismatch or without it neither
complete nor anticipating synchronization occurs. We derive existence and
stability conditions for the retarded synchronization manifold. We demonstrate
our approach using examples of the Ikeda and Mackey-Glass models. Also for the
first time we investigate chaos synchronization in time-delayed systems with
variable delay time and find both existence and sufficient stability conditions
for the retarded synchronization manifold with the coupling delay lag time.
Also for the first time we consider synchronization between two
unidirectionally coupled chaotic multi-feedback Ikeda systems and derive
existence and stability conditions for the different anticipating, lag, and
complete synchronization regimes.Comment: 12 page
Synchronization of chaotic oscillator time scales
This paper deals with the chaotic oscillator synchronization. A new approach
to detect the synchronized behaviour of chaotic oscillators has been proposed.
This approach is based on the analysis of different time scales in the time
series generated by the coupled chaotic oscillators. It has been shown that
complete synchronization, phase synchronization, lag synchronization and
generalized synchronization are the particular cases of the synchronized
behavior called as "time--scale synchronization". The quantitative measure of
chaotic oscillator synchronous behavior has been proposed. This approach has
been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79
Existence of anticipatory, complete and lag synchronizations in time-delay systems
Existence of different kinds of synchronizations, namely anticipatory,
complete and lag type synchronizations (both exact and approximate), are shown
to be possible in time-delay coupled piecewise linear systems. We deduce
stability condition for synchronization of such unidirectionally coupled
systems following Krasovskii-Lyapunov theory. Transition from anticipatory to
lag synchronization via complete synchronization as a function of coupling
delay is discussed. The existence of exact synchronization is preceded by a
region of approximate synchronization from desynchronized state as a function
of a system parameter, whose value determines the stability condition for
synchronization. The results are corroborated by the nature of similarity
functions. A new type of oscillating synchronization that oscillates between
anticipatory, complete and lag synchronization, is identified as a consequence
of delay time modulation with suitable stability condition.Comment: 5 Figures 9 page
Synchronization service integrated into routing layer in wireless sensor networks
The time synchronization problem needs to be considered in a distributed system. In Wireless Sensor Networks (WSNs) this issue must be solved with limited computational, communication and energy resources. Many synchronization protocols exist for WSNs. However, in most cases these protocols are independent entities with specific packets, communication scheme and network hierarchy. This solution is not energy efficient. Because it is very rare for synchronization not to be necessary in WSNs, we advocate integrating the synchronization service into the routing layer. We have implemented this approach in a new synchronization protocol called Routing Integrated Synchronization Service (RISS). Our tests show that RISS is very time and energy efficient and also is characterized by a small overhead. We have compared its performance experimentally to that of the FTSP synchronization protocol and it has proved to offer better time precision than the latter protocol
Chaotic synchronization of coupled electron-wave systems with backward waves
The chaotic synchronization of two electron-wave media with interacting
backward waves and cubic phase nonlinearity is investigated in the paper. To
detect the chaotic synchronization regime we use a new approach, the so-called
time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is
based on the consideration of the infinite set of chaotic signals' phases
introduced by means of continuous wavelet transform. The complex space-time
dynamics of the active media and mechanisms of the time scale synchronization
appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370
Adaptive Synchronization of Robotic Sensor Networks
The main focus of recent time synchronization research is developing
power-efficient synchronization methods that meet pre-defined accuracy
requirements. However, an aspect that has been often overlooked is the high
dynamics of the network topology due to the mobility of the nodes. Employing
existing flooding-based and peer-to-peer synchronization methods, are networked
robots still be able to adapt themselves and self-adjust their logical clocks
under mobile network dynamics? In this paper, we present the application and
the evaluation of the existing synchronization methods on robotic sensor
networks. We show through simulations that Adaptive Value Tracking
synchronization is robust and efficient under mobility. Hence, deducing the
time synchronization problem in robotic sensor networks into a dynamic value
searching problem is preferable to existing synchronization methods in the
literature.Comment: First International Workshop on Robotic Sensor Networks part of
Cyber-Physical Systems Week, Berlin, Germany, 14 April 201
- …
