7,793,593 research outputs found
Recommended from our members
FES rehabilitation platform with real-time control and performance feedback.
Osteoporosis after spinal cord injury is associated with low-trauma fractures, and consequently with increased risk of morbidity and mortality. The loss of bone mass density (BMD) due to paraplegia can be reduced through cyclical electrically-induced muscle contractions. Here we propose an FES control system based on posture switching, that induces transient loading of the lower limbs during a set of standing postures. This aims to produce an increased, evenly distributed BMD, whilst minimising FES-induced muscle fatigue. Here we describe the design and assessment of the FES exercising platform, comprising a controllable multi-channel electrical stimulator and an instrumented standing frame. The platform supports standing and postural shifting, provides real-time human-in-the-loop FES control with on-line feedback to the user. The platforms is used to investigate the effect of regular exercise on the distribution of BMD in people with paraplegia
The effect of time on gait recognition performance
Many studies have shown that it is possible to recognize people by the way they walk. However, there are a number of covariate factors that affect recognition performance. The time between capturing the gallery and the probe has been reported to affect recognition the most. To date, no study has shown the isolated effect of time, irrespective of other covariates. Here we present the first principled study that examines the effect of elapsed time on gait recognition. Using empirical evidence we show for the first time that elapsed time does not affect recognition significantly in the short to medium term. By controlling the clothing worn by the subjects and the environment, a Correct Classification Rate (CCR) of 95% has been achieved over 9 months, on a dataset of 2280 gait samples. Our results show that gait can be used as a reliable biometric over time and at a distance. We have created a new multimodal temporal database to enable the research community to investigate various gait and face covariates. We have also investigated the effect of different type of clothes, variations in speed and footwear on the recognition performance. We have demonstrated that clothing drastically affects performance regardless of elapsed time and significantly more than any of the other covariates that we have considered here. The research then suggests a move towards developing appearance invariant recognition algorithms. Thi
Performance analysis of time slicing in DVB-H
TV is the biggest media and the last one missing from mobile phones. Digital Video Broadcasting for Handhelds (DVB-H) is the latest development from the DVB Project targeting handheld, battery powered devices such as mobile telephones, PDAs(Personal Digital Assistants), etc. Time Division Multiplexing (TDM) is the technology that is usually used in computer and telecommunication systems. Time slicing is one of the characteristics that makes it possible to broadcast high resolution TV programes and fast IP data services to battery powered handheld terminals. This paper discusses the characteristics and advantages of Time slicing algorithm in DVB-H and presents the performance analysis of time slicing in DVB-H through both theoretical analysis and software simulation
LiveCap: Real-time Human Performance Capture from Monocular Video
We present the first real-time human performance capture approach that
reconstructs dense, space-time coherent deforming geometry of entire humans in
general everyday clothing from just a single RGB video. We propose a novel
two-stage analysis-by-synthesis optimization whose formulation and
implementation are designed for high performance. In the first stage, a skinned
template model is jointly fitted to background subtracted input video, 2D and
3D skeleton joint positions found using a deep neural network, and a set of
sparse facial landmark detections. In the second stage, dense non-rigid 3D
deformations of skin and even loose apparel are captured based on a novel
real-time capable algorithm for non-rigid tracking using dense photometric and
silhouette constraints. Our novel energy formulation leverages automatically
identified material regions on the template to model the differing non-rigid
deformation behavior of skin and apparel. The two resulting non-linear
optimization problems per-frame are solved with specially-tailored
data-parallel Gauss-Newton solvers. In order to achieve real-time performance
of over 25Hz, we design a pipelined parallel architecture using the CPU and two
commodity GPUs. Our method is the first real-time monocular approach for
full-body performance capture. Our method yields comparable accuracy with
off-line performance capture techniques, while being orders of magnitude
faster
Performance Enhancement of Multiuser Time Reversal UWB Communication System
UWB communication is a recent research area for indoor propagation channels.
Time Reversal (TR) communication in UWB has shown promising results for
improving the system performance. In multiuser environment, the system
performance is significantly degraded due to the interference among different
users. TR reduces the interference caused by multiusers due to its spatial
focusing property. The performance of a multiuser TR communication system is
further improved if the TR filter is modified. In this paper, multiuser TR in
UWB communication is investigated using simple TR filter and a modified TR
filter with circular shift operation. The concept of circular shift in TR is
analytically studied. Thereafter, the channel impulse responses (CIR) of a
typical indoor laboratory environment are measured. The measured CIRs are used
to analyze the received signal peak power and signal to interference ratio
(SIR) with and without performing the circular shift operation in a multiuser
environment
Performance analysis of continuous-time solvers for quantum impurity models
Impurity solvers play an essential role in the numerical investigation of
strongly correlated electrons systems within the "dynamical mean field"
approximation. Recently, a new class of continuous-time solvers has been
developed, based on a diagrammatic expansion of the partition function in
either the interactions or the impurity-bath hybridization. We investigate the
performance of these two complementary approaches and compare them to the
well-established Hirsch-Fye method. The results show that the continuous-time
methods, and in particular the version which expands in the hybridization,
provide substantial gains in computational efficiency
Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance
The paper presents a Stateflow based network test-bed to validate real-time
optimal control algorithms. Genetic Algorithm (GA) based time domain
performance index minimization is attempted for tuning of PI controller to
handle a balanced lag and delay type First Order Plus Time Delay (FOPTD)
process over network. The tuning performance is validated on a real-time
communication network with artificially simulated stochastic delay, packet loss
and out-of order packets characterizing the network.Comment: 6 pages, 12 figure
- …
