162,741 research outputs found
Approximate minimum BER power allocation for MIMO-THP system
This paper proposes a transmit power allocation (TPA) scheme based on multiple-input multiple-output (MIMO) Tomlinson-Harashima precoding (THP) structure, where a TPA matrix is introduced to the conventional MIMO-THP. We analyze the influence of the introduced TPA matrix on the performance of MIMO-THP. The proposed TPA scheme invokes the minimum average uncoded bit-error rate (BER) criterion subjected to a sum-power constraint. During the derivation, we consider the effects of precoding loss factor on the TPA scheme and obtain a closed-form expression of the TPA. Compared to existing TPA methods for MIMO-THP systems, the proposed scheme reduces processing complexity and improves the BER performance
Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney
Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI
A novel frequency-domain implementation of Tomlinson-Harashima precoding for SC-FDMA
There is considerable interest in the use of single carrier frequency division multiple access (SC-FDMA) as the uplink transmission scheme in the 3GPP Long Term Evolution standard. This interest is justified by the inherent single carrier structure of SC-FDMA, which results in reduced sensitivity to phase noise and a lower peak-to-average power ratio (PAPR) compared to orthogonal frequency division multiple access. This, consequently, makes it more attractive for low cost devices with limited transmit power. In this paper we demonstrate how precoding the uplink transmission is an alternative signal processing technique to equalization in order to combat the frequency selective nature of the propagation channel. The frequency-domain implementation of Tomlinson-Harashima precoding (THP) for uplink SC-FDMA is proposed. We investigate the BER performance and the PAPR characteristics of the preceded SC-FDMA waveform for ZF and MMSE based THP. Results reported here show that the MMSE-THP outperforms the ZF-THP in terms of BER performance and PAPR.There is considerable interest in the use of single carrier frequency division multiple access (SC-FDMA) as the uplink transmission scheme in the 3GPP Long Term Evolution standard. This interest is justified by the inherent single carrier structure of SC-FDMA, which results in reduced sensitivity to phase noise and a lower peak-to-average power ratio (PAPR) compared to orthogonal frequency division multiple access. This, consequently, makes it more attractive for low cost devices with limited transmit power. In this paper we demonstrate how precoding the uplink transmission is an alternative signal processing technique to equalization in order to combat the frequency selective nature of the propagation channel. The frequency-domain implementation of Tomlinson-Harashima precoding (THP) for uplink SC-FDMA is proposed. We investigate the BER performance and the PAPR characteristics of the preceded SC-FDMA waveform for ZF and MMSE based THP. Results reported here show that the MMSE-THP outperforms the ZF-THP in terms of BER performance and PAP
Ordered Tomlinson-Harashima Precoding in G.fast Downstream
G.fast is an upcoming next generation DSL standard envisioned to use
bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly
overcomes direct links. Its cancellation based on non-linear
Tomlinson-Harashima Precoding (THP) proved to show significant advantage over
standard linear precoding. This paper proposes a novel THP structure in which
ordering of successive interference pre-cancellation can be optimized for
downstream with non-cooperating receivers. The optimized scheme is compared to
existing THP structure denoted as equal-rate THP which is widely adopted in
wireless downlink. Structure and performance of both methods differ
significantly favoring the proposed scheme. The ordering that maximizes the
minimum rate (max-min fairness) for each tone of the discrete multi-tone
modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to
the global maximum when applied independently on each tone. The proposed novel
Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics
to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015,
Selected Areas in Communications: Access Networks and Systems, 6-10 December,
201
Oral Administration of Levo-Tetrahydropalmatine Attenuates Reinstatement of Extinguished Cocaine Seeking by Cocaine, Stress or Drug-Associated Cues in Rats
Cocaine addiction is characterized by a persistently heightened susceptibility to drug relapse. For this reason, the identification of medications that prevent drug relapse is a critical goal of drug abuse research. Drug re-exposure, the onset of stressful life events, and exposure to cues previously associated with drug use have been identified as determinants of relapse in humans and have been found to reinstate extinguished cocaine seeking in rats. This study examined the effects of acute oral (gavage) administration of levo-tetrahydropalmatine (l-THP), a tetrahydroprotoberberine isoquinoline with a pharmacological profile that includes antagonism of D1, D2 and D3 dopamine receptors, on the reinstatement of extinguished cocaine seeking by a cocaine challenge (10 mg/kg, ip), a stressor (uncontrollable electric footshock [EFS]) or response-contingent exposure to a stimulus (tone and light complex) previously associated with drug delivery in male Sprague–Dawley rats. Extinguished drug seeking was reinstated by ip cocaine, EFS, or response-contingent presentation of drug-associated cues in vehicle-pretreated rats following extinction of iv cocaine self-adminisration. Oral administration of either 3.0 or 10.0 mg/kg l-THP 1 h prior to reinstatement testing significantly attenuated reinstatement by each of the stimuli. Food-reinforced responding and baseline post-extinction responding were significantly attenuated at the 10.0, but not the 3.0 mg/kg, l-THP dose, indicating that the effects of 3 mg/kg l-THP on reinstatement were likely independent of non-specific motor impairment. These findings further suggest that l-THP may have utility for the treatment of cocaine addiction
Levo-Tetrahydropalmatine Attenuates Cocaine Self-Administration under a Progressive-Ratio Schedule and Cocaine Discrimination in Rats
Levo-tetrahydropalmatine (l-THP) is an alkaloid found in many traditional Chinese herbal preparations and has a unique pharmacological profile that includes dopamine receptor antagonism. Previously we demonstrated that l-THP attenuates fixed-ratio (FR) cocaine self-administration (SA) and cocaine-induced reinstatement in rats at doses that do not alter food-reinforced responding. This study examined the effects of l-THP on cocaine and food SA under progressive-ratio (PR) schedules of reinforcement and the discriminative stimulus effects of cocaine. In adult male Sprague–Dawley rats self-administering cocaine (0.5 or 1.0 mg/kg/inf), l-THP significantly reduced breaking points at the 1.875, 3.75 and 7.5 mg/kg doses. l-THP also reduced the breaking point and response rate for PR SA of sucrose-sweetened food pellets, although the decrease was significant only at the 7.5 mg/kg l-THP dose. In rats trained to discriminate cocaine (10 mg/kg, ip) from saline, l-THP (1.875, 3.75 and 7.5 mg/kg) produced a rightward shift in the dose–response curve for cocaine generalization. During generalization testing, l-THP reduced response rate, but only at the 7.5 mg/kg dose. l-THP also prevented substitution of the dopamine D2/D3 receptor agonist, (±) 7-OH-DPAT, for cocaine suggesting a potential role for antagonism of D2 and/or D3 receptors in the effects of l-THP. These data further demonstrate that l-THP attenuates the reinforcing and subjective effects of cocaine at doses that do not produce marked motor effects and provide additional evidence that l-THP may have utility for the management of cocaine addiction
- …
