780,234 research outputs found
The lifetime of excess atmospheric carbon dioxide
We explore the effects of a changing terrestrial biosphere on the atmospheric residence time of CO2 using three simple ocean carbon cycle models and a model of global terrestrial carbon cycling. We find differences in model behavior associated with the assumption of an active terrestrial biosphere (forest regrowth) and significant differences if we assume a donor-dependent flux from the atmosphere to the terrestrial component (e.g., a hypothetical terrestrial fertilization flux). To avoid numerical difficulties associated with treating the atmospheric CO2 decay (relaxation) curve as being well approximated by a weighted sum of exponential functions, we define the single half-life as the time it takes for a model atmosphere to relax from its present-day value half way to its equilibrium pCO2 value. This scenario-based approach also avoids the use of unit pulse (Dirac Delta) functions which can prove troublesome or unrealistic in the context of a terrestrial fertilization assumption. We also discuss some of the numerical problems associated with a conventional lifetime calculation which is based on an exponential model. We connect our analysis of the residence time of CO2 and the concept of single half-life to the residence time calculations which are based on using weighted sums of exponentials. We note that the single half-life concept focuses upon the early decline of CO2under a cutoff/decay scenario. If one assumes a terrestrial biosphere with a fertilization flux, then our best estimate is that the single half-life for excess CO2 lies within the range of 19 to 49 years, with a reasonable average being 31 years. If we assume only regrowth, then the average value for the single half-life for excess CO2 increases to 72 years, and if we remove the terrestrial component completely, then it increases further to 92 years
Coreless Terrestrial Exoplanets
Differentiation in terrestrial planets is expected to include the formation
of a metallic iron core. We predict the existence of terrestrial planets that
have differentiated but have no metallic core--planets that are effectively a
giant silicate mantle. We discuss two paths to forming a coreless terrestrial
planet, whereby the oxidation state during planetary accretion and
solidification will determine the size or existence of any metallic core. Under
this hypothesis, any metallic iron in the bulk accreting material is oxidized
by water, binding the iron in the form of iron oxide into the silicate minerals
of the planetary mantle. The existence of such silicate planets has
consequences for interpreting the compositions and interior density structures
of exoplanets based on their mass and radius measurements.Comment: ApJ, in press. 22 pages, 5 figure
Terrestrial planets across space and time
The study of cosmology, galaxy formation and exoplanets has now advanced to a
stage where a cosmic inventory of terrestrial planets may be attempted. By
coupling semi-analytic models of galaxy formation to a recipe that relates the
occurrence of planets to the mass and metallicity of their host stars, we trace
the population of terrestrial planets around both solar-mass (FGK type) and
lower-mass (M dwarf) stars throughout all of cosmic history. We find that the
mean age of terrestrial planets in the local Universe is Gyr for FGK
hosts and Gyr for M dwarfs. We estimate that hot Jupiters have
depleted the population of terrestrial planets around FGK stars by no more than
, and that only of the terrestrial planets at the
current epoch are orbiting stars in a metallicity range for which such planets
have yet to be confirmed. The typical terrestrial planet in the local Universe
is located in a spheroid-dominated galaxy with a total stellar mass comparable
to that of the Milky Way. When looking at the inventory of planets throughout
the whole observable Universe, we argue for a total of and terrestrial planets around FGK and M
stars, respectively. Due to light travel time effects, the terrestrial planets
on our past light cone exhibit a mean age of just Gyr. These
results are discussed in the context of cosmic habitability, the Copernican
principle and searches for extraterrestrial intelligence at cosmological
distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some
changes in quantitative results compared to v.1, mainly due to differences in
IMF assumption
Removal of terrestrial DOC in aquatic ecosystems of a temperate river network
Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones
The Last Stages of Terrestrial Planet Formation: Dynamical Friction and the Late Veneer
The final stage of terrestrial planet formation consists of the cleanup of
residual planetesimals after the giant impact phase. Dynamically, a residual
planetesimal population is needed to damp the high eccentricities of the
terrestrial planets after the giant impact stage. Geochemically, highly
siderophile element (HSE) abundance patterns inferred for the terrestrial
planets and the Moon suggest that a total of about 0.01 M_Earth of chondritic
material was delivered as `late veneer' by planetesimals to the terrestrial
planets after the end of giant impacts. Here we combine these two independent
lines of evidence for a leftover population of planetesimals and show that: 1)
A residual planetesimal population containing 0.01 M_Earth is able to damp the
eccentricities of the terrestrial planets after giant impacts to their observed
values. 2) At the same time, this planetesimal population can account for the
observed relative amounts of late veneer added to the Earth, Moon and Mars
provided that the majority of the late veneer was delivered by small
planetesimals with radii <10m. These small planetesimal sizes are required to
ensure efficient damping of the planetesimal's velocity dispersion by mutual
collisions, which in turn ensures that the planets' accretion cross sections
are significantly enhanced by gravitational focusing above their geometric
values. Specifically we find, in the limit that the relative velocity between
the terrestrial planets and the planetesimals is significantly less than the
terrestrial planets' escape velocities, that gravitational focusing yields an
accretion ratio Earth/Mars~17, which agrees well with the accretion ratio
inferred from HSEs of 12-23. For the Earth-Moon system, we find an accretion
ratio of ~200, which is consistent with estimates of 150-700 derived from HSE
abundances that include the lunar crust as well as mantle component. (Abridged)Comment: accepted for publication in ApJ, 9 pages, 4 figures; minor
corrections, additional references adde
Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208
We have undertaken a thorough dynamical investigation of five extrasolar
planetary systems using extensive numerical experiments. The systems Gl 777 A,
HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of
whether they could host terrestrial like planets in their habitable zones
(=HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar
systems. Then a fine grid of initial conditions for a potential terrestrial
planet within the HZ was chosen for each system, from which the stability of
orbits was then assessed by direct integrations over a time interval of 1
million years. The computations were carried out using a Lie-series integration
method with an adaptive step size control. This integration method achieves
machine precision accuracy in a highly efficient and robust way, requiring no
special adjustments when the orbits have large eccentricities. The stability of
orbits was examined with a determination of the Renyi entropy, estimated from
recurrence plots, and with a more straight forward method based on the maximum
eccentricity achieved by the planet over the 1 million year integration.
Additionally, the eccentricity is an indication of the habitability of a
terrestrial planet in the HZ; any value of e>0.2 produces a significant
temperature difference on a planet's surface between apoapse and periapse. The
results for possible stable orbits for terrestrial planets in habitable zones
for the five systems are summarized as follows: for Gl 777 A nearly the entire
HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive
for a sufficiently long time, while for Gl 614 our results exclude terrestrial
planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&
The Diversity of Extrasolar Terrestrial Planets
Extrasolar planetary host stars are enriched in key planet-building elements.
These enrichments have the potential to drastically alter the building blocks
available for terrestrial planet formation. Here we report on the combination
of dynamical models of late-stage terrestrial planet formation within known
extrasolar planetary systems with chemical equilibrium models of the
composition of solid material within the disk. This allows us to constrain the
bulk elemental composition of extrasolar terrestrial planets. A wide variety of
resulting planetary compositions exist, ranging from those that are essentially
"Earth-like", containing metallic Fe and Mg-silicates, to those that are
dominated by graphite and SiC. This implies that a diverse range of terrestrial
planets are likely to exist within extrasolar planetary systems.Comment: 4 pages, 1 figure. Submitted to the proceedings of IAU symposium 265
Chemical Abundances in the Universe: Connecting First Stars to Planet
- …
