12,379,630 research outputs found

    A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture

    Get PDF
    In tissue engineering, the chemical and topographical cues within three-dimensional (3D) scaffolds are normally tested using static cell cultures but applied directly to tissue cultures in perfusion bioreactors. As human cells are very sensitive to the changes of culture environment, it is essential to evaluate the performance of any chemical, and topographical cues in a perfused environment before they are applied to tissue engineering. Thus the aim of this research was to bridge the gap between static and perfusion cultures by addressing the effect of perfusion on cell cultures within 3D scaffolds. For this we developed a scale down bioreactor system, which allows to evaluate the effectiveness of various chemical and topographical cues incorporated into our previously developed tubular ε-polycaprolactone scaffold under perfused conditions. Investigation of two exemplary cell types (fibroblasts and cortical astrocytes) using the miniaturized bioreactor indicated that: (1) quick and firm cell adhesion in 3D scaffold was critical for cell survival in perfusion culture compared with static culture, thus cell seeding procedures for static cultures might not be applicable. Therefore it was necessary to re-evaluate cell attachment on different surfaces under perfused conditions before a 3D scaffold was applied for tissue cultures, (2) continuous medium perfusion adversely influenced cell spread and survival, which could be balanced by intermittent perfusion, (3) micro-grooves still maintained its influences on cell alignment under perfused conditions, while medium perfusion demonstrated additional influence on fibroblast alignment but not on astrocyte alignment on grooved substrates. This research demonstrated that the mini-bioreactor system is crucial for the development of functional scaffolds with suitable chemical and topographical cues by bridging the gap between static culture and perfusion culture

    Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing.

    Get PDF
    Platelets are a recognised potent source of transforming growth factor-β1 (TGFβ1), a cytokine known to promote wound healing and regeneration by stimulating dermal fibroblast proliferation and extracellular matrix deposition. Platelet lysate has been advocated as a novel personalised therapeutic to treat persistent wounds, although the precise platelet-derived growth factors responsible for these beneficial effects have not been fully elucidated. The aim of this study was to investigate the specific role of platelet-derived TGFβ1 in cutaneous wound healing. Using a transgenic mouse with a targeted deletion of TGFβ1 in megakaryocytes and platelets (TGFβ1fl/fl .PF4-Cre), we show for the first time that platelet-derived TGFβ1 contributes to epidermal and dermal thickening and cellular turnover after excisional skin wounding. In vitro studies demonstrate that human dermal fibroblasts stimulated with platelet lysate containing high levels of platelet-derived TGFβ1 did not exhibit enhanced collagen deposition or proliferation, suggesting that platelet-derived TGFβ1 is not a key promoter of these wound healing processes. Interestingly, human keratinocytes displayed enhanced TGFβ1-driven proliferation in response to platelet lysate, reminiscent of our in vivo findings. In summary, our novel findings define and emphasise an important role of platelet-derived TGFβ1 in epidermal remodelling and regeneration processes during cutaneous wound healing

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue.

    Get PDF
    Retinal organoid technology enables generation of an inexhaustible supply of three-dimensional retinal tissue from human pluripotent stem cells (hPSCs) for regenerative medicine applications. The high similarity of organoid-derived retinal tissue and transplantable human fetal retina provides an opportunity for evaluating and modeling retinal tissue replacement strategies in relevant animal models in the effort to develop a functional retinal patch to restore vision in patients with profound blindness caused by retinal degeneration. Because of the complexity of this very promising approach requiring specialized stem cell and grafting techniques, the tasks of retinal tissue derivation and transplantation are frequently split between geographically distant teams. Delivery of delicate and perishable neural tissue such as retina to the surgical sites requires a reliable shipping protocol and also controlled temperature conditions with damage-reporting mechanisms in place to prevent transplantation of tissue damaged in transit into expensive animal models. We have developed a robust overnight tissue shipping protocol providing reliable temperature control, live monitoring of the shipment conditions and physical location of the package, and damage reporting at the time of delivery. This allows for shipping of viable (transplantation-competent) hPSC-derived retinal tissue over large distances, thus enabling stem cell and surgical teams from different parts of the country to work together and maximize successful engraftment of organoid-derived retinal tissue. Although this protocol was developed for preclinical in vivo studies in animal models, it is potentially translatable for clinical transplantation in the future and will contribute to developing clinical protocols for restoring vision in patients with retinal degeneration

    eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering.

    Get PDF
    This study evaluates the durability of a novel tissue engineered blood vessel (TEBV) created by seeding a natural vascular tissue scaffold (decellularized human saphenous vein allograft) with autologous adipose-derived stem cells (ASC) differentiated into endothelial-like cells. Previous work with this model revealed the graft to be thrombogenic, likely due to inadequate endothelial differentiation as evidenced by minimal production of nitric oxide (NO). To evaluate the importance of NO expression by the seeded cells, we created TEBV using autologous ASC transfected with the endothelial nitric oxide synthase (eNOS) gene to produce NO. We found that transfected ASC produced NO at levels similar to endothelial cell (EC) controls in vitro which was capable of causing vasorelaxation of aortic specimens ex vivo. TEBV (n = 5) created with NO-producing ASC and implanted as interposition grafts within the aorta of rabbits remained patent for two months and demonstrated a non-thrombogenic surface compared to unseeded controls (n = 5). Despite the xenograft nature of the scaffold, the TEBV structure remained well preserved in seeded grafts. In sum, this study demonstrates that upregulation of NO expression within adult stem cells differentiated towards an endothelial-like lineage imparts a non-thrombogenic phenotype and highlights the importance of NO production by cells to be used as endothelial cell substitutes in vascular tissue engineering applications

    Long-term behavioural change detection through pervasive sensing

    Get PDF
    The paper proposes an information generation and summarisation algorithm to detect behavioural change in applications such as long-term monitoring of vulnerable people. The algorithm learns the monitored subject's behaviour autonomously post-deployment and provides time-suppressed summaries of the activity types engaged with by the subject over the course of their day to day life. It transmits updates to external observers only when the summary changes by more than a defined threshold. This technique substantially reduces the number of transmission required by a wearable monitoring system, both through summarisation of the raw data into useful information and by preventing transmission of duplicated or predictable data and information. Based on evaluation using simulated activity data, the proposed algorithm results in an average of one transmission per month following an initial convergence period (reaching less than 1 transmission per day after only three days) and detects a change in behaviour after an average of 1.1 days.<br/

    Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Get PDF
    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd

    Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study

    Get PDF
    AIMS:Glucagon-like peptide 1 receptor agonists (GLP-1 RA) induce weight loss and reduction in adipose tissue, but the effects of GLP-1 RA on the distribution of fat deposits have been poorly investigated. METHODS: In 25 patients with type 2 diabetes (16 females and 9 males, mean age 63.5 ± 8.8 years), treated with GLP-1 RA (exenatide, n. 12; liraglutide, n.13), both before and 3 months after starting treatment, an abdominal ultrasonographic scan, with Doppler of renal arteries, and echocardiography were performed. Subcutaneous fat width (peri-umbilical and sub-xiphoid), deep fat deposits (pre-aortic, peri-renal, and epicardial), and renal resistive index (RI) were evaluated. RESULTS: GLP-1 RA induced highly significant (p < 0.001) decrease in BMI and in fat thickness at all the assessed sites, without differences between exenatide and liraglutide treatment. A slight decrease in RI (p = 0.055) was also found. The percent changes of fat thickness was different between sites (p < 0.025), and the changes in subcutaneous deposits showed no significant correlation (p = 0.064) with those of deep fat deposits. CONCLUSIONS: A short course of treatment with GLP-1 RA, besides weight loss, induces a redistribution of adipose tissue deposits, possibly contributing to a better cardiovascular risk profile in patients with type 2 diabetes mellitus
    corecore