73,056 research outputs found

    TensorFlow Doing HPC

    Full text link
    TensorFlow is a popular emerging open-source programming framework supporting the execution of distributed applications on heterogeneous hardware. While TensorFlow has been initially designed for developing Machine Learning (ML) applications, in fact TensorFlow aims at supporting the development of a much broader range of application kinds that are outside the ML domain and can possibly include HPC applications. However, very few experiments have been conducted to evaluate TensorFlow performance when running HPC workloads on supercomputers. This work addresses this lack by designing four traditional HPC benchmark applications: STREAM, matrix-matrix multiply, Conjugate Gradient (CG) solver and Fast Fourier Transform (FFT). We analyze their performance on two supercomputers with accelerators and evaluate the potential of TensorFlow for developing HPC applications. Our tests show that TensorFlow can fully take advantage of high performance networks and accelerators on supercomputers. Running our TensorFlow STREAM benchmark, we obtain over 50% of theoretical communication bandwidth on our testing platform. We find an approximately 2x, 1.7x and 1.8x performance improvement when increasing the number of GPUs from two to four in the matrix-matrix multiply, CG and FFT applications respectively. All our performance results demonstrate that TensorFlow has high potential of emerging also as HPC programming framework for heterogeneous supercomputers.Comment: Accepted for publication at The Ninth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES'19

    Characterizing Deep-Learning I/O Workloads in TensorFlow

    Full text link
    The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and then moved to accelerator for computation. In addition, checkpointing and restart operations are carried out to allow DL computing frameworks to restart quickly from a checkpoint. Because of this, I/O affects the performance of DL applications. In this work, we characterize the I/O performance and scaling of TensorFlow, an open-source programming framework developed by Google and specifically designed for solving DL problems. To measure TensorFlow I/O performance, we first design a micro-benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application based on AlexNet to measure the performance cost of I/O and checkpointing in TensorFlow. To improve the checkpointing performance, we design and implement a burst buffer. We find that increasing the number of threads increases TensorFlow bandwidth by a maximum of 2.3x and 7.8x on our benchmark environments. The use of the tensorFlow prefetcher results in a complete overlap of computation on accelerator and input pipeline on CPU eliminating the effective cost of I/O on the overall performance. The use of a burst buffer to checkpoint to a fast small capacity storage and copy asynchronously the checkpoints to a slower large capacity storage resulted in a performance improvement of 2.6x with respect to checkpointing directly to slower storage on our benchmark environment.Comment: Accepted for publication at pdsw-DISCS 201

    TensorFlow Enabled Genetic Programming

    Full text link
    Genetic Programming, a kind of evolutionary computation and machine learning algorithm, is shown to benefit significantly from the application of vectorized data and the TensorFlow numerical computation library on both CPU and GPU architectures. The open source, Python Karoo GP is employed for a series of 190 tests across 6 platforms, with real-world datasets ranging from 18 to 5.5M data points. This body of tests demonstrates that datasets measured in tens and hundreds of data points see 2-15x improvement when moving from the scalar/SymPy configuration to the vector/TensorFlow configuration, with a single core performing on par or better than multiple CPU cores and GPUs. A dataset composed of 90,000 data points demonstrates a single vector/TensorFlow CPU core performing 875x better than 40 scalar/Sympy CPU cores. And a dataset containing 5.5M data points sees GPU configurations out-performing CPU configurations on average by 1.3x.Comment: 8 pages, 5 figures; presented at GECCO 2017, Berlin, German
    corecore