1,665,386 research outputs found
Temporal aggregation of multivariate GARCH processes
This paper derives results for the temporal aggregation of multivariate GARCH processes in the general vector specification. It is shown that the class of weak multivariate GARCH processes is closed under temporal aggregation. Fourth moment characteristics turn out to be crucial for the low frequency dynamics for both stock and flow variables. The framework used in this paper can easily be extended to investigate joint temporal and contemporaneous aggregation. Discussing causality in volatility, I find that there is not much room for spurious instantaneous causality in multivariate GARCH processes, but that spurious Granger causality will be more common however numerically insignificant. Forecasting volatility, it is generally advisable to aggregate forecasts of the disaggregate series rather than forecasting the aggregated series directly, and unlike for VARMA processes the advantage does not diminish for large forecast horizons. Finally, results are derived for the distribution of multivariate realized volatility if the high frequency process follows multivariate GARCH. A numerical example illustrates some of the resultsmultivariate GARCH, temporal aggregation, causality in volatility, forecasting volatility, realized volatility
Multilevel ensemble Kalman filtering for spatio-temporal processes
We design and analyse the performance of a multilevel ensemble Kalman filter
method (MLEnKF) for filtering settings where the underlying state-space model
is an infinite-dimensional spatio-temporal process. We consider underlying
models that needs to be simulated by numerical methods, with discretization in
both space and time. The multilevel Monte Carlo (MLMC) sampling strategy,
achieving variance reduction through pairwise coupling of ensemble particles on
neighboring resolutions, is used in the sample-moment step of MLEnKF to produce
an efficient hierarchical filtering method for spatio-temporal models. Under
sufficient regularity, MLEnKF is proven to be more efficient for weak
approximations than EnKF, asymptotically in the large-ensemble and
fine-numerical-resolution limit. Numerical examples support our theoretical
findings.Comment: Version 1: 39 pages, 4 figures.arXiv admin note: substantial text
overlap with arXiv:1608.08558 . Version 2 (this version): 52 pages, 6
figures. Revision primarily of the introduction and the numerical examples
sectio
The clustering of polarity reversals of the geomagnetic field
Often in nature the temporal distribution of inhomogeneous stochastic point
processes can be modeled as a realization of renewal Poisson processes with a
variable rate. Here we investigate one of the classical examples, namely the
temporal distribution of polarity reversals of the geomagnetic field. In spite
of the commonly used underlying hypothesis, we show that this process strongly
departs from a Poisson statistics, the origin of this failure stemming from the
presence of temporal clustering. We find that a Levy statistics is able to
reproduce paleomagnetic data, thus suggesting the presence of long-range
correlations in the underlying dynamo process.Comment: 4 pages, in press on PRL (31 march 2006?
State estimation for temporal point processes
This paper is concerned with combined inference for point processes on the
real line observed in a broken interval. For such processes, the classic
history-based approach cannot be used. Instead, we adapt tools from sequential
spatial point processes. For a range of models, the marginal and conditional
distributions are derived. We discuss likelihood based inference as well as
parameter estimation using the method of moments, conduct a simulation study
for the important special case of renewal processes and analyse a data set
collected by Diggle and Hawtin
Hierarchy of Temporal Responses of Multivariate Self-Excited Epidemic Processes
We present the first exact analysis of some of the temporal properties of
multivariate self-excited Hawkes conditional Poisson processes, which
constitute powerful representations of a large variety of systems with bursty
events, for which past activity triggers future activity. The term
"multivariate" refers to the property that events come in different types, with
possibly different intra- and inter-triggering abilities. We develop the
general formalism of the multivariate generating moment function for the
cumulative number of first-generation and of all generation events triggered by
a given mother event (the "shock") as a function of the current time . This
corresponds to studying the response function of the process. A variety of
different systems have been analyzed. In particular, for systems in which
triggering between events of different types proceeds through a one-dimension
directed or symmetric chain of influence in type space, we report a novel
hierarchy of intermediate asymptotic power law decays of the rate of triggered events as a function of the
distance of the events to the initial shock in the type space, where for the relevant long-memory processes characterizing many natural
and social systems. The richness of the generated time dynamics comes from the
cascades of intermediate events of possibly different kinds, unfolding via a
kind of inter-breeding genealogy.Comment: 40 pages, 8 figure
Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks
Stochastic simulations are one of the cornerstones of the analysis of
dynamical processes on complex networks, and are often the only accessible way
to explore their behavior. The development of fast algorithms is paramount to
allow large-scale simulations. The Gillespie algorithm can be used for fast
simulation of stochastic processes, and variants of it have been applied to
simulate dynamical processes on static networks. However, its adaptation to
temporal networks remains non-trivial. We here present a temporal Gillespie
algorithm that solves this problem. Our method is applicable to general Poisson
(constant-rate) processes on temporal networks, stochastically exact, and up to
multiple orders of magnitude faster than traditional simulation schemes based
on rejection sampling. We also show how it can be extended to simulate
non-Markovian processes. The algorithm is easily applicable in practice, and as
an illustration we detail how to simulate both Poissonian and non-Markovian
models of epidemic spreading. Namely, we provide pseudocode and its
implementation in C++ for simulating the paradigmatic
Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and
a Susceptible-Infected-Recovered model with non-constant recovery rates. For
empirical networks, the temporal Gillespie algorithm is here typically from 10
to 100 times faster than rejection sampling.Comment: Minor changes and updates to reference
Temporal networks of face-to-face human interactions
The ever increasing adoption of mobile technologies and ubiquitous services
allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity at
the finest resolution of face-to-face proximity. As a consequence, empirical
data describing social and behavioral networks are acquiring a longitudinal
dimension that brings forth new challenges for analysis and modeling. Here we
review recent work on the representation and analysis of temporal networks of
face-to-face human proximity, based on large-scale datasets collected in the
context of the SocioPatterns collaboration. We show that the raw behavioral
data can be studied at various levels of coarse-graining, which turn out to be
complementary to one another, with each level exposing different features of
the underlying system. We briefly review a generative model of temporal contact
networks that reproduces some statistical observables. Then, we shift our focus
from surface statistical features to dynamical processes on empirical temporal
networks. We discuss how simple dynamical processes can be used as probes to
expose important features of the interaction patterns, such as burstiness and
causal constraints. We show that simulating dynamical processes on empirical
temporal networks can unveil differences between datasets that would otherwise
look statistically similar. Moreover, we argue that, due to the temporal
heterogeneity of human dynamics, in order to investigate the temporal
properties of spreading processes it may be necessary to abandon the notion of
wall-clock time in favour of an intrinsic notion of time for each individual
node, defined in terms of its activity level. We conclude highlighting several
open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series:
Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
Modelling of Dynamic Spatial Processes
The paper is concerned with econometric modeling of the dynamic spatial processes on the example of the GDP per capita in selected European countries. The considerations of the paper are focused on investigations of the structure of components of the spatio-temporal process. As a result of the analysis some specifications of the dynamic spatial models have been obtained. Next the issues of the estimation and verification of the models are presented. The main conclusion from the analysis is that the econometric models of the spatio-temporal processes ought to be of the dynamic character, e.g. considering the spatial and spatio-temporal trends and spatial, temporal and spatio-temporal autodependence as well.spatio-temporal trend, autocorrelation, spatial lag model, dynamic spatial model.
- …
