623,098 research outputs found

    Constrained information flows in temporal networks reveal intermittent communities

    Get PDF
    Many real-world networks represent dynamic systems with interactions that change over time, often in uncoordinated ways and at irregular intervals. For example, university students connect in intermittent groups that repeatedly form and dissolve based on multiple factors, including their lectures, interests, and friends. Such dynamic systems can be represented as multilayer networks where each layer represents a snapshot of the temporal network. In this representation, it is crucial that the links between layers accurately capture real dependencies between those layers. Often, however, these dependencies are unknown. Therefore, current methods connect layers based on simplistic assumptions that do not capture node-level layer dependencies. For example, connecting every node to itself in other layers with the same weight can wipe out dependencies between intermittent groups, making it difficult or even impossible to identify them. In this paper, we present a principled approach to estimating node-level layer dependencies based on the network structure within each layer. We implement our node-level coupling method in the community detection framework Infomap and demonstrate its performance compared to current methods on synthetic and real temporal networks. We show that our approach more effectively constrains information inside multilayer communities so that Infomap can better recover planted groups in multilayer benchmark networks that represent multiple modes with different groups and better identify intermittent communities in real temporal contact networks. These results suggest that node-level layer coupling can improve the modeling of information spreading in temporal networks and better capture intermittent community structure.Comment: 10 pages, 10 figures, published in PR

    Layer Selection in Progressive Transmission of Motion-Compensated JPEG2000 Video

    Get PDF
    MCJ2K (Motion-Compensated JPEG2000) is a video codec based on MCTF (Motion- Compensated Temporal Filtering) and J2K (JPEG2000). MCTF analyzes a sequence of images, generating a collection of temporal sub-bands, which are compressed with J2K. The R/D (Rate-Distortion) performance in MCJ2K is better than the MJ2K (Motion JPEG2000) extension, especially if there is a high level of temporal redundancy. MCJ2K codestreams can be served by standard JPIP (J2K Interactive Protocol) servers, thanks to the use of only J2K standard file formats. In bandwidth-constrained scenarios, an important issue in MCJ2K is determining the amount of data of each temporal sub-band that must be transmitted to maximize the quality of the reconstructions at the client side. To solve this problem, we have proposed two rate-allocation algorithms which provide reconstructions that are progressive in quality. The first, OSLA (Optimized Sub-band Layers Allocation), determines the best progression of quality layers, but is computationally expensive. The second, ESLA (Estimated-Slope sub-band Layers Allocation), is sub-optimal in most cases, but much faster and more convenient for real-time streaming scenarios. An experimental comparison shows that even when a straightforward motion compensation scheme is used, the R/D performance of MCJ2K competitive is compared not only to MJ2K, but also with respect to other standard scalable video codecs

    Multi-scale 3D Convolution Network for Video Based Person Re-Identification

    Full text link
    This paper proposes a two-stream convolution network to extract spatial and temporal cues for video based person Re-Identification (ReID). A temporal stream in this network is constructed by inserting several Multi-scale 3D (M3D) convolution layers into a 2D CNN network. The resulting M3D convolution network introduces a fraction of parameters into the 2D CNN, but gains the ability of multi-scale temporal feature learning. With this compact architecture, M3D convolution network is also more efficient and easier to optimize than existing 3D convolution networks. The temporal stream further involves Residual Attention Layers (RAL) to refine the temporal features. By jointly learning spatial-temporal attention masks in a residual manner, RAL identifies the discriminative spatial regions and temporal cues. The other stream in our network is implemented with a 2D CNN for spatial feature extraction. The spatial and temporal features from two streams are finally fused for the video based person ReID. Evaluations on three widely used benchmarks datasets, i.e., MARS, PRID2011, and iLIDS-VID demonstrate the substantial advantages of our method over existing 3D convolution networks and state-of-art methods.Comment: AAAI, 201

    An H.264/AVC to SVC TemporalTranscoder in baseline profile: digest of technical papers

    Get PDF
    Scalable Video Coding provides temporal, spatial and quality scalability using layers within the encoded bitstream. This feature allows the encoded bitstream to be adapted to different devices and heterogeneous networks. This paper proposes a technique to convert an H.264/AVC bitstream in Baseline profile to a scalable stream which provides temporal scalability. Applying the presented approach, a reduction of 65% of coding complexity is achieved while maintaining the coding efficiency

    A proposal for dependent optimization in scalabale region-based coding systems

    Get PDF
    We address in this paper the problem of optimal coding in the framework of region-based video coding systems, with a special stress on content-based functionalities. We present a coding system that can provide scaled layers (using PSNR or temporal content-based scalability) such that each one has an optimal partition with optimal bit allocation among the resulting regions. This coding system is based on a dependent optimization algorithm that can provide joint optimality for a group of layers or a group of frames.Peer ReviewedPostprint (published version
    corecore