623,098 research outputs found
Constrained information flows in temporal networks reveal intermittent communities
Many real-world networks represent dynamic systems with interactions that
change over time, often in uncoordinated ways and at irregular intervals. For
example, university students connect in intermittent groups that repeatedly
form and dissolve based on multiple factors, including their lectures,
interests, and friends. Such dynamic systems can be represented as multilayer
networks where each layer represents a snapshot of the temporal network. In
this representation, it is crucial that the links between layers accurately
capture real dependencies between those layers. Often, however, these
dependencies are unknown. Therefore, current methods connect layers based on
simplistic assumptions that do not capture node-level layer dependencies. For
example, connecting every node to itself in other layers with the same weight
can wipe out dependencies between intermittent groups, making it difficult or
even impossible to identify them. In this paper, we present a principled
approach to estimating node-level layer dependencies based on the network
structure within each layer. We implement our node-level coupling method in the
community detection framework Infomap and demonstrate its performance compared
to current methods on synthetic and real temporal networks. We show that our
approach more effectively constrains information inside multilayer communities
so that Infomap can better recover planted groups in multilayer benchmark
networks that represent multiple modes with different groups and better
identify intermittent communities in real temporal contact networks. These
results suggest that node-level layer coupling can improve the modeling of
information spreading in temporal networks and better capture intermittent
community structure.Comment: 10 pages, 10 figures, published in PR
Layer Selection in Progressive Transmission of Motion-Compensated JPEG2000 Video
MCJ2K (Motion-Compensated JPEG2000) is a video codec based on MCTF (Motion- Compensated Temporal Filtering) and J2K (JPEG2000). MCTF analyzes a sequence of images, generating a collection of temporal sub-bands, which are compressed with J2K. The R/D (Rate-Distortion) performance in MCJ2K is better than the MJ2K (Motion JPEG2000) extension, especially if there is a high level of temporal redundancy. MCJ2K codestreams can be served by standard JPIP (J2K Interactive Protocol) servers, thanks to the use of only J2K standard file formats. In bandwidth-constrained scenarios, an important issue in MCJ2K is determining the amount of data of each temporal sub-band that must be transmitted to maximize the quality of the reconstructions at the client side. To solve this problem, we have proposed two rate-allocation algorithms which provide reconstructions that are progressive in quality. The first, OSLA (Optimized Sub-band Layers Allocation), determines the best progression of quality layers, but is computationally expensive. The second, ESLA (Estimated-Slope sub-band Layers Allocation), is sub-optimal in most cases, but much faster and more convenient for real-time streaming scenarios. An experimental comparison shows that even when a straightforward motion compensation scheme is used, the R/D performance of MCJ2K competitive is compared not only to MJ2K, but also with respect to other standard scalable video codecs
Multi-scale 3D Convolution Network for Video Based Person Re-Identification
This paper proposes a two-stream convolution network to extract spatial and
temporal cues for video based person Re-Identification (ReID). A temporal
stream in this network is constructed by inserting several Multi-scale 3D (M3D)
convolution layers into a 2D CNN network. The resulting M3D convolution network
introduces a fraction of parameters into the 2D CNN, but gains the ability of
multi-scale temporal feature learning. With this compact architecture, M3D
convolution network is also more efficient and easier to optimize than existing
3D convolution networks. The temporal stream further involves Residual
Attention Layers (RAL) to refine the temporal features. By jointly learning
spatial-temporal attention masks in a residual manner, RAL identifies the
discriminative spatial regions and temporal cues. The other stream in our
network is implemented with a 2D CNN for spatial feature extraction. The
spatial and temporal features from two streams are finally fused for the video
based person ReID. Evaluations on three widely used benchmarks datasets, i.e.,
MARS, PRID2011, and iLIDS-VID demonstrate the substantial advantages of our
method over existing 3D convolution networks and state-of-art methods.Comment: AAAI, 201
An H.264/AVC to SVC TemporalTranscoder in baseline profile: digest of technical papers
Scalable Video Coding provides temporal, spatial and quality scalability using layers within the encoded bitstream. This feature allows the encoded bitstream to be adapted to different devices and heterogeneous networks. This paper proposes a technique to convert an H.264/AVC bitstream in Baseline profile to a scalable stream which provides temporal scalability. Applying the presented approach, a reduction of 65% of coding complexity is achieved while maintaining the coding efficiency
A proposal for dependent optimization in scalabale region-based coding systems
We address in this paper the problem of optimal coding in the framework of region-based video coding systems, with a special stress on content-based functionalities. We present a coding system that can provide scaled layers (using PSNR or temporal content-based scalability) such that each one has an optimal partition with optimal bit allocation among the resulting regions. This coding system is based on a dependent optimization algorithm that can provide joint optimality for a group of layers or a group of frames.Peer ReviewedPostprint (published version
- …
