3,097,701 research outputs found

    Instrument accurately measures small temperature changes on test surface

    Get PDF
    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material

    Temperature compensated digital inertial sensor

    Get PDF
    A circuit which maintains the inertial element of a gyroscope or accelerometer at a constant position by delivering pulses to a rebalancing motor is discussed. The circuit compensates for temperature changes by using a temperature sensor that varies the threshold of inertial element movement required to generate a rebalance pulse which reacts to changes in viscosity of the flotation fluid. The output of the temperature sensor also varies the output level of the current source to compensate for changes in the strength of the magnets of the rebalancing motor. The sensor also provides a small signal to the rebalance motor to provide a temperature dependent compensation for fixed drift or fixed bias

    Temperature dependence of the LabPET small-animal PET scanner

    Get PDF
    INTRODUCTION In quantitative PET imaging it is important to correct for all image-degrading effects, for example detector efficiency variation. Detector efficiency variation depends on the stability of detector efficiency when operating conditions vary within normal limits. As the efficiency of APD-based light detection strongly depends on ambient temperature, temperature-dependent detector efficiency normalization may be needed in APD-based PET scanners. We have investigated the temperature dependence of the LabPET APD-based small-animal PET scanner. MATERIALS AND METHODS First a simulation study was performed to evaluate the effect of different APD temperature coefficients on the temperature dependence of scanner sensitivity. Five experiments were also performed. First the immediate effect of temperature changes on scanner sensitivity was evaluated. Second, the effect of temperature changes that have stabilized for a few hours was investigated. In a third experiment the axial sensitivity profile was acquired at 21 degrees C and 24 degrees C. Next, two acquisitions of the NEMA image quality phantom (at 21 degrees C and 23 degrees C) were performed and absolute quantification was done based on normalization scans acquired at the correct and incorrect temperature. Finally, the feasibility of maintaining a constant room temperature and the stability of the scanner sensitivity under constant room temperature was evaluated. RESULTS Simulations showed that the relation between temperature-dependent APD gain changes and scanner sensitivity is quite complex. A temperature deviation leading to a 1 % change in APD gain corresponds to a much larger change in scanner sensitivity due to the shape of the energy histogram. In the first and second experiment a strong correlation between temperature and scanner sensitivity was observed. Changes of 2.24 kcps/MBq and 1.64 kcps/MBq per degrees C were seen for immediate and stabilized temperature changes respectively. The NEMA axial sensitivity profile also showed a decrease in sensitivity at higher temperature. The quantification experiment showed that a larger quantification error (up to 13%) results when a normalization scan acquired at the incorrect temperature is used. In the last experiment, temperature variability was 0.19 degrees C and counts varied by 10.2 Mcts (1.33%). CONCLUSION The sensitivity of the LabPET small-animal PET scanner strongly depends on room temperature. Therefore, room temperature should be kept as stable as possible and temperature-dependent detector efficiency normalization should be used. However, with constant room temperature excellent scanner stability is observed. Temperature should be kept constant within 0.5 degrees C and weekly normalization scans are recommended

    Temperature sensitive oscillator

    Get PDF
    An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature

    The Ability of Horseshoe Crabs (Limulus polyphemus) To Detect Changes in Temperature

    Get PDF
    Previous studies have suggested that horseshoe crabs prefer warm water, suggesting that they may be able to detect changes in water temperature. The overall goal of this study was to test this hypothesis. Our specific objectives were to: 1) find out if horseshoe crabs can detect temperature changes; 2) determine the magnitude of temperature change they can detect, and; 3) determine whether their temperature receptors are located internally or externally. Animals were placed in a light-tight chamber that received a constant flow of cooled seawater. Their heart rates were continuously recorded and a change in heart rate following the addition of warmer water was used as an indicator that they sensed the change in temperature. The results showed that 50% of horseshoe crabs responded to a temperature change of 1°C, while 100% responded to a temperature change of 2.6°C. Over half of the horseshoe crabs also responded to a rate of temperature change of less than 1.5°C. Both of these results indicate that horseshoe crabs can, indeed, sense temperature changes. Also, the horseshoe crabs typically showed a response before their internal temperature changed, indicating that their temperature receptors are most likely located externally

    Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalisation and sideband linewidth insensitivity

    Get PDF
    We investigate temperature-dependent resonance fluorescence spectra obtained from a single self-assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalisation of the driven dot Rabi frequency. We also present first evidence for a non-perturbative regime of phonon coupling, in which the expected linear increase in sideband linewidth as a function of temperature is cancelled by the corresponding reduction in Rabi frequency. These results indicate that dephasing in semiconductor quantum dots may be less sensitive to changes in temperature than expected from a standard weak-coupling analysis of phonon effects.Comment: Close to published version, new figure and minor changes to the text. 5 pages, 3 figure

    Thin film devices used as oxygen partial pressure sensors

    Get PDF
    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes
    corecore