124,094 research outputs found
Digital Tectonics as a Morphogenetic Process
p. 938-948Tectonics is a seminal concept that defines the nature of the relationship between
architecture and its structural properties. The changing definition of the symbiotic
relationship between structural engineering and architectural design may be considered one of the formative influences on the conceptual evolution of tectonics in different historical periods. Recent developments in the field of morphogenesis, digital media, theories techniques and methods of digital design have contributed a new models of integration between structure, material and form in digital tectonics.
The objective of this paper is to propose and define tectonics as a model of morphogenetic process. The paper identifies and presents the manner in which theory and emerging concepts of morphogenesis as well as digital models of design are contributing to this new model. The paper first analyzes the historical evolution of tectonics as a concept and characterizes the emergence of theoretical framework reflected in concepts and terms related to morphogenesis.Oxman, R. (2010). Digital Tectonics as a Morphogenetic Process. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695
Inevitability of Plate Tectonics on Super-Earths
The recent discovery of super-Earths (masses less or equal to 10
earth-masses) has initiated a discussion about conditions for habitable worlds.
Among these is the mode of convection, which influences a planet's thermal
evolution and surface conditions. On Earth, plate tectonics has been proposed
as a necessary condition for life. Here we show, that super-Earths will also
have plate tectonics. We demonstrate that as planetary mass increases, the
shear stress available to overcome resistance to plate motion increases while
the plate thickness decreases, thereby enhancing plate weakness. These effects
contribute favorably to the subduction of the lithosphere, an essential
component of plate tectonics. Moreover, uncertainties in achieving plate
tectonics in the one earth-mass regime disappear as mass increases:
super-Earths, even if dry, will exhibit plate tectonic behaviour.Comment: 13 pages, 2 figures and 1 table; in press in ApJ
The Ability of Significant Tidal Stress to Initiate Plate Tectonics
Plate tectonics is a geophysical process currently unique to Earth, has an
important role in regulating the Earth's climate, and may be better understood
by identifying rocky planets outside our solar system with tectonic activity.
The key criterion for whether or not plate tectonics may occur on a terrestrial
planet is if the stress on a planet's lithosphere from mantle convection may
overcome the lithosphere's yield stress. Although many rocky exoplanets closely
orbiting their host stars have been detected, all studies to date of plate
tectonics on exoplanets have neglected tidal stresses in the planet's
lithosphere. Modeling a rocky exoplanet as a constant density, homogeneous,
incompressible sphere, we show the tidal stress from the host star acting on
close-in planets may become comparable to the stress on the lithosphere from
mantle convection. We also show that tidal stresses from planet-planet
interactions are unlikely to be significant for plate tectonics, but may be
strong enough to trigger Earthquakes. Our work may imply planets orbiting close
to their host stars are more likely to experience plate tectonics, with
implications for exoplanetary geophysics and habitability. We produce a list of
detected rocky exoplanets under the most intense stresses. Atmospheric and
topographic observations may confirm our predictions in the near future.
Investigations of planets with significant tidal stress can not only lead to
observable parameters linked to the presence of active plate tectonics, but may
also be used as a tool to test theories on the main driving force behind
tectonic activity.Comment: 34 pages, 3 figures, 3 Tables, accepted to Icaru
Inter- and intra-plate deformation at North American plate boundaries
Alaska tectonics and earthquake hazard studies; Southern California tectonics (block rotation); spreading near the Salton Trough; California plate motion (fault zone kinematics); and Caribbean plate motion investigations are examined
Techniques, problems and uses of mega-geomorphological mapping
A plea for a program of global geomorphological mapping based on remote sensing data is presented. It is argued that the program is a necessary step in bringing together the rapidly evolving concepts of plate tectonics with the science of geomorphology. Geomorphologists are urged to bring temporal scales into their subject and to abandon their recent isolation from tectonics and geological history. It is suggested that a start be made with a new geomorphological map of Europe, utilizing the latest space technology
Plate tectonics: When ancient continents collide
The geological record preserves scant evidence for early plate tectonics. Analysis of eclogites — metamorphic rocks formed in subduction zones — in the Trans-Hudson mountain belt suggests modern-style subduction may have operated 1,800 million years ago
Effects of inherited structures on inversion tectonics: Examples from the Asturian Basin (NW Iberian Peninsula) interpreted in a Computer Assisted Virtual Environment (CAVE)
Map shows mid-nineteenth century Texas counties, major cities, towns, roads, railroads, and areas of Native American habitation. Includes detailed notes on map. Insets: "Plan of Sabine Lake," "Plan of the Northern Part of Texas," and "Plan of Galveston Bay." Relief shown by hachures. Depths shown by soundings on inset. Scales [ca. 1:2,350,000], [ca. 1: 529,000], [ca. 1:3,800,000], and [ca. 1:887,000]
Early impact basins and the onset of plate tectonics
The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics
- …
