54,173 research outputs found
Normal fault earthquakes or graviquakes
Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy
accumulated during the interseismic period. However, in crustal extensional settings, gravity is
the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times
larger than the observed magnitude, far more than enough to explain the earthquake. Therefore,
normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with
respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion
even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the
normal fault, the larger is the vertical displacement and the larger is the seismic energy released.
Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In
low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing
great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the
other tectonic settings, being the activated fault at most about three times the hypocentre depth,
explaining their higher b-value and the lower magnitude of the largest recorded events. Having
different phenomenology, graviquakes show peculiar precursor
Longer aftershocks duration in extensional tectonic settings
Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along
the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes
Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization
The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described
Emplacement of sandstone intrusions during contractional tectonics
Acknowledgments We acknowledge the support of sponsoring companies of Phase 3 of the Sand Injection Research Group (SIRG). We are very grateful to John Waldron and Jessica Ross for the constructive reviews of the manuscript. We also wish to thank and acknowledge the continuing help and access provided by the Bureau of Land Management.Peer reviewedPostprin
Impact of volcanism on the sedimentary record of the Neuquén rift basin, Argentina: towards a cause and effect model
The analysis of volcano-sedimentary infill in sedimentary basins constitutes a challenge for basin analysis and hydrocarbon exploration worldwide. In order to understand the contribution of volcanism to the sedimentary record in rift basins, we study the Jurassic effusive-explosive volcanic infill of an inverted extensional depocentre at the Neuquén Basin, Argentina. A cause and effect model that evaluates the relationship between volcanism and sedimentation was devised to develop a conceptual model for the tectono-stratigraphic evolution of this volcanic rift basin. We show how the variations in the volcanism, coupled with the activity of extensional faults, determined the types of volcanic edifices (i.e., composite volcanoes, graben-calderas, and lava fields). Volcanic edifices controlled the stacking patterns of the volcanic units as well as sedimentary systems. The landform of the volcanic edifices, as well as the styles and scales of the eruptions governed the sedimentary input to the basin, setting the main variables of the sedimentary systems, such as provenance, grain size, transport and deposition and geometry. As a result, the contrasting volcaniclastic input, from higher volcaniclastic input to lower volcaniclastic input, associated with different subsidence patterns, determined the high-resolution syn-rift infill patterns of the extensional depocentre. The cause and effect model presented in this study isolates the variables of the volcanic environments that control the sedimentary scenarios. We suggest that, by adjusting the first order input parameters of the model, these cause and effect scenarios could be adapted to similar rift basins, in order to establish predictive facies models with stratigraphic controls, and the impact of volcanism on their stratigraphic records.Fil: D'Elia, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Martí, Joan. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; EspañaFil: Muravchik, Martin. University Of Bergen; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bilmes, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología.; ArgentinaFil: Franzese, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentin
Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm.
Jurassic mélange complexes related to the subduction of the Neotethys Ocean occur
in the Bükk Mountains, North Hungary. This paper characterizes the sedimentary sequence of
basin and slope facies that occur in the southwestern part of the Bükk Mountains, placing special
emphasis on the redeposited sedimentary rocks (olistostromes, olistoliths: Mónosbél Group) in order
to obtain information on the provenance of the clasts, and the mode and time of their redeposition.
The series of formations studied shows a general coarsening-upwards trend. Based on radiolarians
and foraminifera, the Mónosbél Group formed in Early to Late Bathonian time. The lower part
of the complex is typified by a predominance of pelagic carbonates, shale and radiolarite with
andesitic volcaniclastic intercalations. The higher part of the succession is characterized by polymictic
olistostromes. Large olistoliths that are predominantly blocks of Bathonian shallow marine limestone
(Bükkzsérc Limestone) appear in the upper part of the sequence. Based on the biostratigraphic and
sedimentological data, results of analyses of the redeposited clasts and taking into consideration
the concepts of the development of the western Neotethys domain, the evolutionary stages of the
sedimentary basins were defined. The onset of the compressional stage led to initiation of nappe
stacking that led to the formation of polymict olistostromes and then to the redeposition of large
blocks derived from out-of-sequence nappes of the former platform foreland
Can tract element distributions reclaim tectonomagmatic facies of basalts in greenstone assemblages?
During the past two decades many words have been written both for and against the hypothesis that the tectonic setting of a suite of igneous rocks is retained by the chemical variability within the suite. For example, it is argued that diagrams can be constructed from modern/recent basalt subcompositions within the system Ti-Zr-Y-Nb-Sr such that tectonomagmatic settings can be reclaimed. If one accepts this conclusion, it is tempting to inquire as to how far this hypothesis can be extended into other petrological realms. If chemical variations of metabasalts retain information relating to their genesis (tectonic setting), for example, this would be most helpful in reconstructing the history of basalts from greenstone belts. A discussion follows
Provenance and geochemistry of exotic clasts in conglomerates of the Oligocene Torehina Formation, Coromandel Peninsula, New Zealand
Non-marine pebble to cobble conglomerates of the lower Torehina Formation (Oligocene) crop out along western Coromandel Peninsula and overlie, with strong angular discordance, continental-margin metasedimentary rocks (Manaia Hill Group) of Mesozoic (Late Jurassic to ?Early Cretaceous) age. The conglomerates contain provenance information that identifies a pre-Oligocene depositional history obscured by the unconformable juxtaposition of these Tertiary and Mesozoic strata. Most clasts in the lower Torehina Formation are visually similar to local bedrock lithologies, including metamorphosed sandstones and argillites, but are kaolinitic and contain more detrital and authigenic chert, quartz, and potash feldspar. Local derivation of these clasts seems unlikely. By comparing geochemical ratios with those defined for continental margin sandstones, and well characterised New Zealand tectonic terranes, we interpret the majority of clasts in the lower Torehina Formation to have been derived from a dissected orogen, with mixtures of felsic and volcanogenic-derived sediment. The most likely sources are the Waipapa and Torlesse Terranes. The remaining 20–30% of the clasts in the lower Torehina Formation were originally friable, are coarse grained, and appear to be lithologically exotic relative to known metamorphosed sandstones in basement terrane sources on North Island. Some clasts contain coal laminae and particles, and all contain detrital kaolinite as lithic fragments and matrix. Such characteristics imply a non-marine to marginal-marine source containing sediment derived from strongly weathered granite or granodiorite. Mechanical fragility implies a likely proximal, easily erodible source. We propose that this group of clasts was derived from an Upper Cretaceous sedimentary cover, either part of a locally developed basin fill or part of a once regionally extensive cover on North Island. Either case defines a more widely distributed Cretaceous source than found today
Bedding control on landslides: A methodological approach for computer-aided mapping analysis
Litho-structural control on the spatial and temporal evolution of landslides is one of the major typical aspects on slopes constituted of structurally complex sequences. Mainly focused on instabilities of the earth flow type, a semi-quantitative analysis has been developed with the purpose of identifying and characterizing litho-structural control exerted by bedding on slopes and its effects on landsliding. In quantitative terms, a technique for azimuth data interpolation, Non-continuous Azimuth Distribution Methodological Approach (NADIA), is presented by means of a GIS software application. In addition, processed by NADIA, two indexes have been determined: (i) Δ, aimed at defining the relationship between the orientation of geological bedding planes and slope aspect, and (ii) C, which recognizes localized slope sectors in which the stony component of structurally complex formations is abundant and therefore operates an evolutive control of landslide masses. Furthermore, some Litho-Structural Models (LSMs) of slopes are proposed aiming at characterizing recurrent forms of structural control in the source, channel and deposition areas of gravitational movements. In order to elaborate evolutive models controlling landslide scenarios, LSMs were qualitatively related and compared with Δ and C; quantitative indexes. The methodological procedure has been applied to a lithostructurally complex area of Southern Italy where data about azimuth measurements and landslide mapping were known. It was found that the proposed methodology enables the recognition of typical control conditions on landslides in relation to the LSMs. Different control patterns on landslide shape and on style and distribution of the activity resulted for each LSM. This provides the possibility for first-order identification to be made of the spatial evolution of landslide bodies. © Author(s) 2011
- …
