67,880 research outputs found

    Targeted therapy in melanoma

    Get PDF
    Malignant melanoma is a highly lethal disease unless detected early. Single-agent chemotherapy is well tolerated but is associated with very low response rates. Combination chemotherapy and biochemotherapy may improve objective response rates but do not prolong survival and are associated with greater toxicity. Immunotherapeutic approaches such as high-dose interleukin-2 are associated with durable responses in a small percentage of patients, but are impractical for many patients due to accessibility and toxicity issues. Elucidations of the molecular mechanisms of carcinogenesis in melanoma have expanded the horizon of opportunity to alter the natural history of the disease. Multiple signal transduction pathways seem to be aberrant and drugs that target them have been and continue to be in development. In this review we present data on the most promising targeted agents in development, including B-raf inhibitors and other signal transduction inhibitors, oligonucleotides, proteasome inhibitors, as well as inhibitors of angiogenesis. Most agents are in early phase trials although some have already reached phase III evaluation. As knowledge and experience with targeted therapy advance, new challenges appear to be arising particularly in terms of resistance and appropriate patient selection

    Targeted therapy for breast cancer prevention.

    Get PDF
    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer

    A Surgical Perspective on Targeted Therapy of Hepatocellular Carcinoma.

    Get PDF
    Hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide, is difficult to treat and highly lethal. Since HCC is predominantly diagnosed in patients with cirrhosis, treatment planning must consider both the severity of liver disease and tumor burden. To minimize the impact to the patient while treating the tumor, techniques have been developed to target HCC. Anatomical targeting by surgical resection or locoregional therapies is generally reserved for patients with preserved liver function and minimal to moderate tumor burden. Patients with decompensated cirrhosis and small tumors are optimal candidates for liver transplantation, which offers the best chance of long-term survival. Yet, only 20%-30% of patients have disease amenable to anatomical targeting. For the majority of patients with advanced HCC, chemotherapy is used to target the tumor biology. Despite these treatment options, the five-year survival of patients in the United States with HCC is only 16%. In this review we provide a comprehensive overview of current approaches to target HCC. We also discuss emerging diagnostic and prognostic biomarkers, novel therapeutic targets identified by recent genomic profiling studies, and potential applications of immunotherapy in the treatment of HCC

    Effects of RANKL-Targeted Therapy in Immunity and Cancer.

    Get PDF
    The role of the receptor activator of nuclear factor-κB ligand (RANKL)/RANK system is well characterized within bone, where RANKL/RANK signaling mediates osteoclastogenesis and bone resorption. However, this system has also been shown to influence biologic processes beyond the skeletal system, including in the immune system and in cancer. RANKL/RANK signaling is important in lymph-node development, lymphocyte differentiation, dendritic cell survival, T-cell activation, and tolerance induction. The RANKL/RANK axis may also have direct, osteoclast-independent effects on tumor cells. Indeed, activity of the RANKL/RANK pathway in cancer cells has been correlated with tumor progression and advanced disease. Denosumab, a fully human monoclonal antibody against RANKL, inhibits osteoclastogenesis and is widely used not just for the treatment of osteoporosis, but for the prevention of skeletal-related events from bone metastases in solid malignancies such as breast and prostate cancer. The potential effects of denosumab on the immune system have been largely ignored. Nevertheless, with the emergence of immunotherapies for cancer, denosumab may impact the effectiveness of these therapies, especially if they are given in combination. In this article, we review the role of RANKL/RANK in bone, immunity, and cancer. Examining the potential effects of routine treatment with denosumab beyond the bone represents an important area of investigation

    Cancer stem cells in prostate cancer: implications for targeted therapy

    Get PDF
    Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the second most common cause of cancer-related mortality among men in the developed world. Conventional anti-PCa therapies include surgery, radiation, hormonal ablation, and chemotherapy. Despite increasing efforts, these therapies are not effective for patients with advanced and/or metastatic disease. In most cases, cancer therapies fail due to an incomplete depletion of tumor cells, resulting in tumor relapse. The cancer stem cell (CSC) hypothesis is an emerging model that explains many of the molecular characteristics of oncological disease as well as the tendency of cancers to relapse, metastasize, and develop resistance to conventional therapies. CSCs are a reservoir of cancer cells that exhibit properties of self-renewal and the ability to reestablish the heterogeneous tumor cell population. The existence of PCa stem cells offers a theoretical explanation for many uncertainties regarding PCa and also for treatment resistance and disease progression once clinical cure is achieved. Therapies targeting CSCs might therefore lead to more effective cancer treatments, divergent from a traditional anti-proliferative approach, based on tumor bulk reduction accompanied by CSC-specific inhibition. Here, we focus on reviewing the historical perspective as well as concepts regarding stem cells and CSCs in PCa. In addition, we will report possible strategies and new clinical approaches that address the CSC-based concept of tumorigenesis in PCa. (C) 2017 S. Karger AG, Base

    Molecular pathogenesis and targeted therapy of sporadic pancreatic neuroendocrine tumors

    Get PDF
    Over the past few years, knowledge regarding the molecular pathology of sporadic pancreatic neuroendocrine tumors (PNETs) has increased substantially, and a number of targeted agents have been tested in clinical trials in this tumor type. For some of these agents there is a strong biological rationale. Among them, the mammalian target of rapamycin inhibitor Everolimus and the antiangiogenic agent Sunitinib have both been approved for the treatment of PNETs. However, there is lack of knowledge regarding biomarkers able to predict their efficacy, and mechanisms of resistance. Other angiogenesis inhibitors, such as Pazopanib, inhibitors of Src, Hedgehog or of PI3K might all be useful in association or sequence with approved agents. On the other hand, the clinical significance, and potential for treatment of the most common mutations occurring in sporadic PNETs, in the MEN-1 gene and in ATRX and DAXX, remains uncertain. The present paper reviews the main molecular changes occurring in PNETs and how they might be linked with treatment options

    TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.

    Get PDF
    Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer–derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. ©2017 AACR

    Targeted therapy in lymphoma

    Get PDF
    Discovery of new treatments for lymphoma that prolong survival and are less toxic than currently available agents represents an urgent unmet need. We now have a better understanding of the molecular pathogenesis of lymphoma, such as aberrant signal transduction pathways, which have led to the discovery and development of targeted therapeutics. The ubiquitin-proteasome and the Akt/mammalian target of rapamycin (mTOR) pathways are examples of pathological mechanisms that are being targeted in drug development efforts. Bortezomib (a small molecule protease inhibitor) and the mTOR inhibitors temsirolimus, everolimus, and ridaforolimus are some of the targeted therapies currently being studied in the treatment of aggressive, relapsed/refractory lymphoma. This review will discuss the rationale for and summarize the reported findings of initial and ongoing investigations of mTOR inhibitors and other small molecule targeted therapies in the treatment of lymphoma

    Aetiology of community-acquired neonatal sepsis in low and middle income countries

    Get PDF
    99% of the approximate 1 million annual neonatal deaths from life-threatening invasive bacterial infections occur in developing countries, at least 50% of which are from home births or community settings. Data concerning aetiology of sepsis in these settings are necessary to inform targeted therapy and devise management guidelines. This review describes and analyses the bacterial aetiology of community-acquired neonatal sepsis in developing countries
    corecore