1,008,375 research outputs found

    What guidance are researchers given on how to present network meta-analyses to end-users such as policymakers and clinicians? A systematic review

    Get PDF
    © 2014 Sullivan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: Network meta-analyses (NMAs) are complex methodological approaches that may be challenging for non-technical end-users, such as policymakers and clinicians, to understand. Consideration should be given to identifying optimal approaches to presenting NMAs that help clarify analyses. It is unclear what guidance researchers currently have on how to present and tailor NMAs to different end-users. Methods: A systematic review of NMA guidelines was conducted to identify guidance on how to present NMAs. Electronic databases and supplementary sources were searched for NMA guidelines. Presentation format details related to sample formats, target audiences, data sources, analysis methods and results were extracted and frequencies tabulated. Guideline quality was assessed following criteria developed for clinical practice guidelines. Results: Seven guidelines were included. Current guidelines focus on how to conduct NMAs but provide limited guidance to researchers on how to best present analyses to different end-users. None of the guidelines provided reporting templates. Few guidelines provided advice on tailoring presentations to different end-users, such as policymakers. Available guidance on presentation formats focused on evidence networks, characteristics of individual trials, comparisons between direct and indirect estimates and assumptions of heterogeneity and/or inconsistency. Some guidelines also provided examples of figures and tables that could be used to present information. Conclusions: Limited guidance exists for researchers on how best to present NMAs in an accessible format, especially for non-technical end-users such as policymakers and clinicians. NMA guidelines may require further integration with end-users' needs, when NMAs are used to support healthcare policy and practice decisions. Developing presentation formats that enhance understanding and accessibility of NMAs could also enhance the transparency and legitimacy of decisions informed by NMAs.The Canadian Institute of Health Research (CIHR) Drug Safety and Effectiveness Network (Funding reference number – 116573)

    Predicting Anchor Links between Heterogeneous Social Networks

    Full text link
    People usually get involved in multiple social networks to enjoy new services or to fulfill their needs. Many new social networks try to attract users of other existing networks to increase the number of their users. Once a user (called source user) of a social network (called source network) joins a new social network (called target network), a new inter-network link (called anchor link) is formed between the source and target networks. In this paper, we concentrated on predicting the formation of such anchor links between heterogeneous social networks. Unlike conventional link prediction problems in which the formation of a link between two existing users within a single network is predicted, in anchor link prediction, the target user is missing and will be added to the target network once the anchor link is created. To solve this problem, we use meta-paths as a powerful tool for utilizing heterogeneous information in both the source and target networks. To this end, we propose an effective general meta-path-based approach called Connector and Recursive Meta-Paths (CRMP). By using those two different categories of meta-paths, we model different aspects of social factors that may affect a source user to join the target network, resulting in the formation of a new anchor link. Extensive experiments on real-world heterogeneous social networks demonstrate the effectiveness of the proposed method against the recent methods.Comment: To be published in "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

    Deployment Strategies of Multiple Aerial BSs for User Coverage and Power Efficiency Maximization

    Get PDF
    Unmanned aerial vehicle (UAV) based aerial base stations (BSs) can provide rapid communication services to ground users and are thus promising for future communication systems. In this paper, we consider a scenario where no functional terrestrial BSs are available and the aim is deploying multiple aerial BSs to cover a maximum number of users within a certain target area. To this end, we first propose a naive successive deployment method, which converts the non-convex constraints in the involved optimization into a combination of linear constraints through geometrical relaxation. Then we investigate a deployment method based on K-means clustering. The method divides the target area into K convex subareas, where within each subarea, a mixed integer non-linear problem (MINLP) is solved. An iterative power efficient technique is further proposed to improve coverage probability with reduced power. Finally, we propose a robust technique for compensating the loss of coverage probability in the existence of inaccurate user location information (ULI). Our simulation results show that, the proposed techniques achieve an up to 30% higher coverage probability when users are not distributed uniformly. In addition, the proposed simultaneous deployment techniques, especially the one using iterative algorithm improve power-efficiency by up to 15% compared to the benchmark circle packing theory

    Predicting customer's gender and age depending on mobile phone data

    Full text link
    In the age of data driven solution, the customer demographic attributes, such as gender and age, play a core role that may enable companies to enhance the offers of their services and target the right customer in the right time and place. In the marketing campaign, the companies want to target the real user of the GSM (global system for mobile communications), not the line owner. Where sometimes they may not be the same. This work proposes a method that predicts users' gender and age based on their behavior, services and contract information. We used call detail records (CDRs), customer relationship management (CRM) and billing information as a data source to analyze telecom customer behavior, and applied different types of machine learning algorithms to provide marketing campaigns with more accurate information about customer demographic attributes. This model is built using reliable data set of 18,000 users provided by SyriaTel Telecom Company, for training and testing. The model applied by using big data technology and achieved 85.6% accuracy in terms of user gender prediction and 65.5% of user age prediction. The main contribution of this work is the improvement in the accuracy in terms of user gender prediction and user age prediction based on mobile phone data and end-to-end solution that approaches customer data from multiple aspects in the telecom domain

    Fluctuations in Learners’ Willingness to Communicate During Communicative Task Performance: Conditions and Tendencies

    Get PDF
    A person’s willingness to communicate (WTC), believed to stem from a combination of proximal and distal variables comprising psychological, linguistic, educational and communicative dimensions of language, appears to be a significant predictor of success in language learning. The ability to communicate is both a means and end of language education, since, on the one hand, being able to express the intended meanings in the target language is generally perceived as the main purpose of any language course and, on the other, linguistic development proceeds in the course of language use. However, MacIntyre (2007, p. 564) observes that some learners, despite extensive study, may never become successful L2 speakers. The inability or unwillingness to sustain contacts with more competent language users may influence the way learners are evaluated in various social contexts. Establishing social networks as a result of frequent communication with target language users is believed to foster linguistic development. WTC, initially considered a stable personality trait and then a result of context-dependent influences, has recently been viewed as a dynamic phenomenon changing its intensity within one communicative event (MacIntyre and Legatto, 2011; MacIntyre et al., 2011). The study whose results are reported here attempts to tap into factors that shape one’s willingness to speak during a communicative task. The measures employed to collect the data - selfratings and surveys - allow looking at the issue from a number of perspectives

    End-user feature labeling: a locally-weighted regression approach

    Get PDF
    When intelligent interfaces, such as intelligent desktop assistants, email classifiers, and recommender systems, customize themselves to a particular end user, such customizations can decrease productivity and increase frustration due to inaccurate predictions - especially in early stages, when training data is limited. The end user can improve the learning algorithm by tediously labeling a substantial amount of additional training data, but this takes time and is too ad hoc to target a particular area of inaccuracy. To solve this problem, we propose a new learning algorithm based on locally weighted regression for feature labeling by end users, enabling them to point out which features are important for a class, rather than provide new training instances. In our user study, the first allowing ordinary end users to freely choose features to label directly from text documents, our algorithm was both more effective than others at leveraging end users' feature labels to improve the learning algorithm, and more robust to real users' noisy feature labels. These results strongly suggest that allowing users to freely choose features to label is a promising method for allowing end users to improve learning algorithms effectively
    corecore