570,609 research outputs found

    Labeling of Unique Sequences in Double-Stranded DNA at Sites of Vicinal Nicks Generated by Nicking Endonucleases

    Get PDF
    We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.Wallace A. Coulter Foundatio

    Photoelectrochemical Detection of Dengue-Related Oligonucleotide Sequence Using Anthocyanin as an Intercalating Agent and Electrochromic Material

    Full text link
    World Health Organization (WHO) presupposes a confirmation of dengue virus infection diagnosis with two criteria, i.e. clinical and laboratory criteria. One of the basic methods used by most laboratories to diagnose dengue virus is to detect oligonucleotide sequence using a DNA amplification technique. In this research, the measurement of denguerelated oligonucleotide was conducted by photoelectrochemical method. The presence of oligonucleotide sequence in target DNA can be detected by DNA probe that is immobilized on TiO2 electrode. The DNA hybrid is then bound to electrochromic substance like anthocyanin that generates current when it is subjected to light. The photocurrent is directly proportional to the number of target DNA. The aim of this research is to obtain photoelectrochemical system that has sensitivity and high responsiveness toward the change in oligonucleotide concentration, especially the applicability of anthocyanin as a electrochromic substance and intercalating agent. Linearity (R2) generated from the change of current in response to concentration changes of target DNA (in the concentration range of 0.75–3.00 nM) is 0.9611. Thus, this method has the potential to be developed to detect the presence of dengue virus in biological sample

    Intramolecular integration within Moloney murine leukemia virus DNA

    Get PDF
    By screening a library of unintegrated, circular Moloney murine leukemia virus (M-MuLV) DNA cloned in lambda phage, we found that approximately 20% of the M-MuLV DNA inserts contained internal sequence deletions or inversions. Restriction enzyme mapping demonstrated tht the deleted segments frequently abutted a long terminal repeat (LTR) sequence, whereas the inverted segments were usually flanked by LTR sequences, suggesting that many of the variants arose as a consequence of M-MuLV DNA molecules integrating within their own DNA. Nucleotide sequencing also suggested that most of the variant inserts were generated by autointegration. One of the recombinant M-MuLV DNA inserts contained a large inverted repeat of a unique M-MuLV sequence abutting an LTR. This molecule was shown by nucleotide sequencing to have arisen by an M-MuLV DNA Molecule integrating within a second M-MuLV DNA molecule before cloning. The autointegrated M-MuLV DNA had generally lost two base pairs from the LTR sequence at each junction with target site DNA, whereas a four-base-pair direct repeat of target site DNA flanked the integrated viral DNA. Nucleotide sequencing of preintegration target site DNA showed that this four-base-pair direct repeat was present only once before integration and was thus reiterated by the integration event. The results obtained from the autointegrated clones were supported by nucleotide sequencing of the host-virus junction of two cloned M-MuLV integrated proviruses obtained from infected rat cells. Detailed analysis of the different unique target site sequences revealed no obvious common features

    Paradigms for computational nucleic acid design

    Get PDF
    The design of DNA and RNA sequences is critical for many endeavors, from DNA nanotechnology, to PCR‐based applications, to DNA hybridization arrays. Results in the literature rely on a wide variety of design criteria adapted to the particular requirements of each application. Using an extensively studied thermodynamic model, we perform a detailed study of several criteria for designing sequences intended to adopt a target secondary structure. We conclude that superior design methods should explicitly implement both a positive design paradigm (optimize affinity for the target structure) and a negative design paradigm (optimize specificity for the target structure). The commonly used approaches of sequence symmetry minimization and minimum free‐energy satisfaction primarily implement negative design and can be strengthened by introducing a positive design component. Surprisingly, our findings hold for a wide range of secondary structures and are robust to modest perturbation of the thermodynamic parameters used for evaluating sequence quality, suggesting the feasibility and ongoing utility of a unified approach to nucleic acid design as parameter sets are refined further. Finally, we observe that designing for thermodynamic stability does not determine folding kinetics, emphasizing the opportunity for extending design criteria to target kinetic features of the energy landscape

    How does a protein search for the specific site on DNA: the role of disorder

    Full text link
    Proteins can locate their specific targets on DNA up to two orders of magnitude faster than the Smoluchowski three-dimensional diffusion rate. This happens due to non-specific adsorption of proteins to DNA and subsequent one-dimensional sliding along DNA. We call such one-dimensional route towards the target "antenna". We studied the role of the dispersion of nonspecific binding energies within the antenna due to quasi random sequence of natural DNA. Random energy profile for sliding proteins slows the searching rate for the target. We show that this slowdown is different for the macroscopic and mesoscopic antennas.Comment: 4 pages, 4 figure

    Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression

    Get PDF
    The glucocorticoid receptor (GR) affects the transcription of genes involved in diverse processes, including energy metabolism and the immune response, through DNA-binding dependent and independent mechanisms. The DNA-binding dependent mechanism occurs by direct binding of GR to glucocorticoid response elements (GREs) at regulatory regions of target genes. The DNA-binding independent mechanism involves binding of GR to transcription factors and coactivators that, in turn, contact DNA. A small molecule that competes with GR for binding to GREs could be expected to affect the DNA-dependent pathway selectively by interfering with the protein-DNA interface. We show that a DNA-binding polyamide that targets the consensus GRE sequence binds the glucocorticoid-induced zipper (GILZ) GRE, inhibits expression of GILZ and several other known GR target genes, and reduces GR occupancy at the GILZ promoter. Genome-wide expression analysis of the effects of this polyamide on a set of glucocorticoid-induced and -repressed genes could help to elucidate the mechanism of GR regulation for these genes

    Real sequence effects on the search dynamics of transcription factors on DNA

    Get PDF
    Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.Comment: 26 pages, 7 figure
    corecore