167,776 research outputs found

    A Tabu Search Based Approach for Graph Layout

    Get PDF
    This paper describes an automated tabu search based method for drawing general graph layouts with straight lines. To our knowledge, this is the first time tabu methods have been applied to graph drawing. We formulated the task as a multi-criteria optimization problem with a number of metrics which are used in a weighted fitness function to measure the aesthetic quality of the graph layout. The main goal of this work is to speed up the graph layout process without sacrificing layout quality. To achieve this, we use a tabu search based method that goes through a predefined number of iterations to minimize the value of the fitness function. Tabu search always chooses the best solution in the neighbourhood. This may lead to cycling, so a tabu list is used to store moves that are not permitted, meaning that the algorithm does not choose previous solutions for a set period of time. We evaluate the method according to the time spent to draw a graph and the quality of the drawn graphs. We give experimental results applied on random graphs and we provide statistical evidence that our method outperforms a fast search-based drawing method (hill climbing) in execution time while it produces comparably good graph layouts.We also demonstrate the method on real world graph datasets to show that we can reproduce similar results in a real world setting

    A Local Search Algorithm for Clustering in Software as a Service Networks

    Get PDF
    In this paper we present and analyze a model for clustering in networks that offer Software as a Service (SaaS). In this problem, organizations requesting a set of applications have to be assigned to clusters such that the costs of opening clusters and installing the necessary applications in clusters are minimized. We prove that this problem is NP-hard, and model it as an Integer Program with symmetry breaking constraints. We then propose a Tabu search heuristic for situations where good solutions are desired in a short computation time. Extensive computational experiments are conducted for evaluating the quality of the solutions obtained by the IP model and the Tabu Search heuristic. Experimental results indicate that the proposed Tabu Search is promising.integer programming;complexity theory;Tabu Search;software as a service

    Implementing Tabu Search to Exploit Sparsity in ATSP Instances

    Get PDF
    Real life traveling salesman problem (TSP) instances are often large,sparse, and asymmetric. Conventional tabu search implementations for the TSP that have been reported in the literature, almost always deals with small, dense and symmetric instances. In this paper, we outline data structures and a tabu search implementation that takes advantage of such data structures, which can exploit sparsity of a TSP instances, and hence can solve relatively large TSP instances (with up to 3000 nodes) much faster than conventional implementations. We also provide computational experiences with this implementation.

    A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem

    Get PDF
    In this paper, we study the job shop scheduling problem with the objective of minimizing the total weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the reoptimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature

    Complete local search with memory

    Get PDF
    Neighborhood search heuristics like local search and its variants are some of the most popular approaches to solve discrete optimization problems of moderate to large size. Apart from tabu search, most of these heuristics are memoryless. In this paper we introduce a new neighborhood search heuristic that makes effctive use of memory structures in a way that is different from tabu search. We report computational experiments with this heuristic on the traveling salesperson problem and the subset sum problem.

    A review of the Tabu Search Literature on Traveling Salesman Problems

    Get PDF
    The Traveling Salesman Problem (TSP) is one of the most widely studied problems inrncombinatorial optimization. It has long been known to be NP-hard and hence research onrndeveloping algorithms for the TSP has focused on approximate methods in addition to exactrnmethods. Tabu search is one of the most widely applied metaheuristic for solving the TSP. Inrnthis paper, we review the tabu search literature on the TSP, point out trends in it, and bringrnout some interesting research gaps in this literature.
    corecore