1,794,531 research outputs found

    How can we think the complex?

    Get PDF
    In this chapter we want to provide philosophical tools for understanding and reasoning about complex systems. Classical thinking, which is taught at most schools and universities, has several problems for coping with complexity. We review classical thinking and its drawbacks when dealing with complexity, for then presenting ways of thinking which allow the better understanding of complex systems. Examples illustrate the ideas presented. This chapter does not deal with specific tools and techniques for managing complex systems, but we try to bring forth ideas that facilitate the thinking and speaking about complex systems

    Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems

    Get PDF
    One of the keys to science and environmental literacy is systems thinking. Learning how to think about the interactions between systems, the far-reaching effects of a system, and the dynamic nature of systems are all critical outcomes of science learning. However, students need support to develop systems thinking skills in undergraduate geoscience classrooms. While systems thinking-focused instruction has the potential to benefit student learning, gaps exist in our understanding of students’ use of systems thinking to operationalize and model SHS, as well as their metacognitive evaluation of systems thinking. To address this need, we have designed, implemented, refined, and studied an introductory-level, interdisciplinary course focused on coupled human-water, or sociohydrologic, systems. Data for this study comes from three consecutive iterations of the course and involves student models and explanations for a socio-hydrologic issue (n = 163). To analyze this data, we counted themed features of the drawn models and applied an operationalization rubric to the written responses. Analyses of the written explanations reveal statistically-significant differences between underlying categories of systems thinking (F(5, 768) = 401.6, p \u3c 0.05). Students were best able to operationalize their systems thinking about problem identification (M = 2.22, SD = 0.73) as compared to unintended consequences (M = 1.43, SD = 1.11). Student-generated systems thinking models revealed statistically significant differences between system components, patterns, and mechanisms, F(2, 132) = 3.06, p \u3c 0.05. Students focused most strongly on system components (M = 13.54, SD = 7.15) as compared to related processes or mechanisms. Qualitative data demonstrated three types of model limitation including scope/scale, temporal, and specific components/mechanisms/patterns excluded. These findings have implications for supporting systems thinking in undergraduate geoscience classrooms, as well as insight into links between these two skills

    Systems thinking: critical thinking skills for the 1990s and beyond

    Get PDF
    This pdf article discusses the need for teaching systems thinking and critical thinking skills. Systems thinking and systems dynamics are important for developing effective strategies to close the gap between the interdependent nature of our problems and our ability to understand them. This article calls for a clearer view of the nature of systems thinking and the education system into which it must be transferred. Educational levels: Graduate or professional

    Thinking Tracks for Integrated Systems Design

    Get PDF
    The paper investigates systems thinking and systems engineering. After a short literature review, the paper presents, as a means for systems thinking, twelve thinking tracks. The tracks can be used as creativity starter, checklist, and as means to investigate effects of design decisions taken early in the process. Tracks include thinking about time, risk and safety, and different types of life-cycles. The thinking tracks are based on literature, teaching experience and practice as a system designer. By using the tracks a more complete picture of the system under design, the issue to be solved, the context, stakeholders and the rest of the world is created
    corecore