1,693,030 research outputs found
Systematic Error-Correcting Codes for Rank Modulation
The rank-modulation scheme has been recently proposed for efficiently storing
data in nonvolatile memories. Error-correcting codes are essential for rank
modulation, however, existing results have been limited. In this work we
explore a new approach, \emph{systematic error-correcting codes for rank
modulation}. Systematic codes have the benefits of enabling efficient
information retrieval and potentially supporting more efficient encoding and
decoding procedures. We study systematic codes for rank modulation under
Kendall's -metric as well as under the -metric.
In Kendall's -metric we present -systematic codes for
correcting one error, which have optimal rates, unless systematic perfect codes
exist. We also study the design of multi-error-correcting codes, and provide
two explicit constructions, one resulting in systematic codes
with redundancy at most . We use non-constructive arguments to show the
existence of -systematic codes for general parameters. Furthermore,
we prove that for rank modulation, systematic codes achieve the same capacity
as general error-correcting codes.
Finally, in the -metric we construct two systematic
multi-error-correcting codes, the first for the case of , and the
second for . In the latter case, the codes have the same
asymptotic rate as the best codes currently known in this metric
Systematic Codes for Rank Modulation
The goal of this paper is to construct systematic error-correcting codes for
permutations and multi-permutations in the Kendall's -metric. These codes
are important in new applications such as rank modulation for flash memories.
The construction is based on error-correcting codes for multi-permutations and
a partition of the set of permutations into error-correcting codes. For a given
large enough number of information symbols , and for any integer , we
present a construction for systematic -error-correcting codes,
for permutations from , with less redundancy symbols than the number
of redundancy symbols in the codes of the known constructions. In particular,
for a given and for sufficiently large we can obtain . The same
construction is also applied to obtain related systematic error-correcting
codes for multi-permutations.Comment: to be presented ISIT201
Can Punctured Rate-1/2 Turbo Codes Achieve a Lower Error Floor than their Rate-1/3 Parent Codes?
In this paper we concentrate on rate-1/3 systematic parallel concatenated
convolutional codes and their rate-1/2 punctured child codes. Assuming
maximum-likelihood decoding over an additive white Gaussian channel, we
demonstrate that a rate-1/2 non-systematic child code can exhibit a lower error
floor than that of its rate-1/3 parent code, if a particular condition is met.
However, assuming iterative decoding, convergence of the non-systematic code
towards low bit-error rates is problematic. To alleviate this problem, we
propose rate-1/2 partially-systematic codes that can still achieve a lower
error floor than that of their rate-1/3 parent codes. Results obtained from
extrinsic information transfer charts and simulations support our conclusion.Comment: 5 pages, 7 figures, Proceedings of the 2006 IEEE Information Theory
Workshop, Chengdu, China, October 22-26, 200
Antenna pointing systematic error model derivations
The pointing model used to represent and correct systematic errors for the Deep Space Network (DSN) antennas is presented. Analytical expressions are given in both azimuth-elevation (az-el) and hour angle-declination (ha-dec) mounts for RF axis collimation error, encoder offset, nonorthogonality of axes, axis plane tilt, and structural flexure due to gravity loading. While the residual pointing errors (rms) after correction appear to be within the ten percent of the half-power beamwidth criterion commonly set for good pointing accuracy, the DSN has embarked on an extensive pointing improvement and modeling program aiming toward an order of magnitude higher pointing precision
- …
