1,693,030 research outputs found

    Systematic Error-Correcting Codes for Rank Modulation

    Get PDF
    The rank-modulation scheme has been recently proposed for efficiently storing data in nonvolatile memories. Error-correcting codes are essential for rank modulation, however, existing results have been limited. In this work we explore a new approach, \emph{systematic error-correcting codes for rank modulation}. Systematic codes have the benefits of enabling efficient information retrieval and potentially supporting more efficient encoding and decoding procedures. We study systematic codes for rank modulation under Kendall's τ\tau-metric as well as under the \ell_\infty-metric. In Kendall's τ\tau-metric we present [k+2,k,3][k+2,k,3]-systematic codes for correcting one error, which have optimal rates, unless systematic perfect codes exist. We also study the design of multi-error-correcting codes, and provide two explicit constructions, one resulting in [n+1,k+1,2t+2][n+1,k+1,2t+2] systematic codes with redundancy at most 2t+12t+1. We use non-constructive arguments to show the existence of [n,k,nk][n,k,n-k]-systematic codes for general parameters. Furthermore, we prove that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes. Finally, in the \ell_\infty-metric we construct two [n,k,d][n,k,d] systematic multi-error-correcting codes, the first for the case of d=O(1)d=O(1), and the second for d=Θ(n)d=\Theta(n). In the latter case, the codes have the same asymptotic rate as the best codes currently known in this metric

    Systematic Codes for Rank Modulation

    Get PDF
    The goal of this paper is to construct systematic error-correcting codes for permutations and multi-permutations in the Kendall's τ\tau-metric. These codes are important in new applications such as rank modulation for flash memories. The construction is based on error-correcting codes for multi-permutations and a partition of the set of permutations into error-correcting codes. For a given large enough number of information symbols kk, and for any integer tt, we present a construction for (k+r,k){(k+r,k)} systematic tt-error-correcting codes, for permutations from Sk+rS_{k+r}, with less redundancy symbols than the number of redundancy symbols in the codes of the known constructions. In particular, for a given tt and for sufficiently large kk we can obtain r=t+1r=t+1. The same construction is also applied to obtain related systematic error-correcting codes for multi-permutations.Comment: to be presented ISIT201

    Can Punctured Rate-1/2 Turbo Codes Achieve a Lower Error Floor than their Rate-1/3 Parent Codes?

    Full text link
    In this paper we concentrate on rate-1/3 systematic parallel concatenated convolutional codes and their rate-1/2 punctured child codes. Assuming maximum-likelihood decoding over an additive white Gaussian channel, we demonstrate that a rate-1/2 non-systematic child code can exhibit a lower error floor than that of its rate-1/3 parent code, if a particular condition is met. However, assuming iterative decoding, convergence of the non-systematic code towards low bit-error rates is problematic. To alleviate this problem, we propose rate-1/2 partially-systematic codes that can still achieve a lower error floor than that of their rate-1/3 parent codes. Results obtained from extrinsic information transfer charts and simulations support our conclusion.Comment: 5 pages, 7 figures, Proceedings of the 2006 IEEE Information Theory Workshop, Chengdu, China, October 22-26, 200

    Antenna pointing systematic error model derivations

    Get PDF
    The pointing model used to represent and correct systematic errors for the Deep Space Network (DSN) antennas is presented. Analytical expressions are given in both azimuth-elevation (az-el) and hour angle-declination (ha-dec) mounts for RF axis collimation error, encoder offset, nonorthogonality of axes, axis plane tilt, and structural flexure due to gravity loading. While the residual pointing errors (rms) after correction appear to be within the ten percent of the half-power beamwidth criterion commonly set for good pointing accuracy, the DSN has embarked on an extensive pointing improvement and modeling program aiming toward an order of magnitude higher pointing precision
    corecore