2,354,788 research outputs found

    Thinking Tracks for Integrated Systems Design

    Get PDF
    The paper investigates systems thinking and systems engineering. After a short literature review, the paper presents, as a means for systems thinking, twelve thinking tracks. The tracks can be used as creativity starter, checklist, and as means to investigate effects of design decisions taken early in the process. Tracks include thinking about time, risk and safety, and different types of life-cycles. The thinking tracks are based on literature, teaching experience and practice as a system designer. By using the tracks a more complete picture of the system under design, the issue to be solved, the context, stakeholders and the rest of the world is created

    Dual-processing altruism

    Get PDF
    Altruism refers to an other-benefiting behavior that is costly but bears no direct profit to oneself. At least three different forms can be distinguished: help giving, altruistic punishment, and moral courage. We investigated the differential impact of two thinking modes, intuitive (System 1) and rational (System 2), on these three altruistic behaviors. Situational (state-related) thinking style was manipulated via experimental instructions and generally preferred thinking style (trait-related) was assessed via questionnaires. We found that of the subjectively preferred thinking styles (trait), faith in intuition (System 1) promoted sharing and altruistic punishment, whereas need for cognition (System 2) promoted volunteering in a situation that required moral courage. By contrast, we did not find a significant effect of situational thinking style (state) on any of the altruistic behaviors, although manipulation checks were positive. Results elucidate the affective-motivational underpinnings of different types of altruistic behaviors

    Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems

    Get PDF
    One of the keys to science and environmental literacy is systems thinking. Learning how to think about the interactions between systems, the far-reaching effects of a system, and the dynamic nature of systems are all critical outcomes of science learning. However, students need support to develop systems thinking skills in undergraduate geoscience classrooms. While systems thinking-focused instruction has the potential to benefit student learning, gaps exist in our understanding of students’ use of systems thinking to operationalize and model SHS, as well as their metacognitive evaluation of systems thinking. To address this need, we have designed, implemented, refined, and studied an introductory-level, interdisciplinary course focused on coupled human-water, or sociohydrologic, systems. Data for this study comes from three consecutive iterations of the course and involves student models and explanations for a socio-hydrologic issue (n = 163). To analyze this data, we counted themed features of the drawn models and applied an operationalization rubric to the written responses. Analyses of the written explanations reveal statistically-significant differences between underlying categories of systems thinking (F(5, 768) = 401.6, p \u3c 0.05). Students were best able to operationalize their systems thinking about problem identification (M = 2.22, SD = 0.73) as compared to unintended consequences (M = 1.43, SD = 1.11). Student-generated systems thinking models revealed statistically significant differences between system components, patterns, and mechanisms, F(2, 132) = 3.06, p \u3c 0.05. Students focused most strongly on system components (M = 13.54, SD = 7.15) as compared to related processes or mechanisms. Qualitative data demonstrated three types of model limitation including scope/scale, temporal, and specific components/mechanisms/patterns excluded. These findings have implications for supporting systems thinking in undergraduate geoscience classrooms, as well as insight into links between these two skills

    Systems thinking: critical thinking skills for the 1990s and beyond

    Get PDF
    This pdf article discusses the need for teaching systems thinking and critical thinking skills. Systems thinking and systems dynamics are important for developing effective strategies to close the gap between the interdependent nature of our problems and our ability to understand them. This article calls for a clearer view of the nature of systems thinking and the education system into which it must be transferred. Educational levels: Graduate or professional

    Designing a design thinking approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    Designing a Design Thinking Approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    A Relationship Between Problem Solving Ability and Students' Mathematical Thinking

    Full text link
    This research have a purpose to know is there an influence of problem solving abilty to students mathematical thinking, and to know how strong problem solving ability affect students mathematical thinking. This research used descriptive quantitative method, which a population is all of students that taking discrete mathematics courses both in department of Information Systems and department of mathematics education. Based on the results of data analysis showed that there are an influence of problem solving ability to students mathematical thinking either at department of mathematics education or at department of information systems. In this study, it was found that the influence of problem solving ability to students mathematical thinking which take place at mathematics education department is stonger than at information system department. This is because, at mathematics education department, problem-solving activities more often performed in courses than at department of information system. Almost 75% of existing courses in department of mathematics education involve problem solving to the objective of courses, meanwhile, in the department of information systems, there are only 10% of these courses. As a result, mathematics education department student's are better trained in problem solving than information system department students. So, to improve students' mathematical thinking, its would be better, at fisrtly enhance the problem solving ability

    On the dependability and feasibility of layperson ratings of divergent thinking

    Get PDF
    A new system for subjective rating of responses to divergent thinking tasks was tested using raters recruited from Amazon Mechanical Turk. The rationale for the study was to determine if such raters could provide reliable (aka generalizable) ratings from the perspective of generalizability theory. To promote reliability across the Alternative Uses and Consequence task prompts often used by researchers as measures of Divergent Thinking, two parallel scales were developed to facilitate feasibility and validity of ratings performed by laypeople. Generalizability and dependability studies were conducted separately for two scoring systems: the average-rating system and the snapshot system. Results showed that it is difficult to achieve adequate reliability using the snapshot system, while good reliability can be achieved on both task families using the average-rating system and a specific number of items and raters. Additionally, the construct validity of the average-rating system is generally good, with less validity for certain Consequences items. Recommendations for researchers wishing to adopt the new scales are discussed, along with broader issues of generalizability of subjective creativity ratings. © 2018 Hass, Rivera and Silvia
    corecore