471,285 research outputs found

    Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design.

    Get PDF
    The relaxed complex scheme, a virtual-screening methodology that accounts for protein receptor flexibility, was used to identify a low-micromolar, non-bisphosphonate inhibitor of farnesyl diphosphate synthase. Serendipitously, we also found that several predicted farnesyl diphosphate synthase inhibitors were low-micromolar inhibitors of undecaprenyl diphosphate synthase. These results are of interest because farnesyl diphosphate synthase inhibitors are being pursued as both anti-infective and anticancer agents, and undecaprenyl diphosphate synthase inhibitors are antibacterial drug leads

    Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits

    Get PDF
    Passe-Crassane pears require a 3-month chilling treatment at 0 C to be able to produce ethylene and ripen autonomously after subsequent rewarming. The chilling treatment strongly stimulated ACC oxidase activity, and to a lesser extent ACC synthase activity. At the same time, the levels of mRNAs hybridizing to ACC synthase and ACC oxidase probes increased dramatically. Fruit stored at 18 C immediately after harvest did not exhibit any of these changes, while fruit that had been previously chilled exhibited a burst of ethylene production associated with high activity of ACC oxidase and ACC synthase upon rewarming. ACC oxidase mRNA strongly accumulated in rewarmed fruits, while ACC synthase mRNA level decreased. The chilling-induced accumulation of ACC synthase and ACC oxidase transcripts was strongly reduced when ethylene action was blocked during chilling with 1-methylcyclopropene (1-MCP). Upon rewarming ACC synthase and ACC oxidase transcripts rapidly disappeared in 1-MCP-treated fruits. A five-week treatment of non-chilled fruits with the ethylene analog propylene led to increased expression of ACC oxidase and to ripening. However, ethylene synthesis, ACC synthase activity and ACC synthasemRNAs remained at very lowlevel. Our data indicate thatACC synthase gene expression is regulated by ethylene only during, or after chilling treatment, while ACC oxidase gene expression can be induced separately by either chilling or ethylene

    Visualizing mitochondrial FoF1-ATP synthase as the target of the immunomodulatory drug Bz-423

    Full text link
    Targeting the mitochondrial enzyme FoF1-ATP synthase and modulating its catalytic activities with small molecules is a promising new approach for treatment of autoimmune diseases. The immuno-modulatory compound Bz-423 is such a drug that binds to subunit OSCP of the mitochondrial FoF1-ATP synthase and induces apoptosis via increased reactive oxygen production in coupled, actively respiring mitochondria. Here we review the experimental progress to reveal the binding of Bz-423 to the mitochondrial target and discuss how subunit rotation of FoF1-ATP synthase is affected by Bz-423. Briefly, we report how F\"orster resonance energy transfer (FRET) can be employed to colocalize the enzyme and the fluorescently tagged Bz-423 within the mitochondria of living cells with nanometer resolution.Comment: 10 pages, 2 figure

    Tonic and phasic nitric oxide signals in hippocampal long-term potentiation

    Get PDF
    Nitric oxide ( NO) participates in long-term potentiation (LTP) and other forms of synaptic plasticity in many different brain areas but where it comes from and how it acts remain controversial. Using rat and mouse hippocampal slices, we tested the hypothesis that tonic and phasic NO signals are needed and that they derive from different NO synthase isoforms. NMDA increased NO production in a manner that was potently inhibited by three different neuronal NO synthase ( nNOS) inhibitors. Tonic NO could be monitored after sensitizing guanylyl cyclase-coupled NO receptors, allowing the very low ambient NO concentrations to be detected by cGMP measurement. The levels were unaffected by inhibition of NMDA receptors, nNOS, or the inducible NO synthase ( iNOS). iNOS was also undetectable in protein or activity assays. Tonic NO was susceptible to agents inhibiting endothelial NO synthase ( eNOS) and was missing in eNOS knock-out mice. The eNOS knock-out sexhibited a deficiency in LTP resembling that seen in wild-types treated with a NO synthase inhibitor. LTP in the knock-outs could be fully restored by supplying a low level of NO exogenously. Inhibition of nNOS also caused a major loss of LTP, particularly of late-LTP. Again, exogenous NO could compensate, but higher concentrations were needed compared with those restoring LTP in the eNOS knock-outs. It is concluded that tonic and phasic NO signals are both required for hippocampal LTP and the two are generated, respectively, by eNOS and nNOS, the former in blood vessels and the latter in neurons

    Functional Analysis of Subunit e of the F\u3csub\u3e1\u3c/sub\u3eF\u3csub\u3eo\u3c/sub\u3e-ATP Synthase of the Yeast \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e: Importance of the N-Terminal Membrane Anchor Region

    Get PDF
    Mitochondrial F1Fo-ATP synthase complexes do not exist as physically independent entities but rather form dimeric and possibly oligomeric complexes in the inner mitochondrial membrane. Stable dimerization of two F1Fo-monomeric complexes involves the physical association of two membrane-embedded Fo-sectors. Previously, formation of the ATP synthase dimeric-oligomeric network was demonstrated to play a critical role in modulating the morphology of the mitochondrial inner membrane. In Saccharomyces cerevisiae, subunit e (Su e) of the Fo-sector plays a central role in supporting ATP synthase dimerization. The Su e protein is anchored to the inner membrane via a hydrophobic region located at its N-terminal end. The hydrophilic C-terminal region of Su e resides in the intermembrane space and contains a conserved coiled-coil motif. In the present study, we focused on characterizing the importance of these regions for the function of Su e. We created a number of C-terminal-truncated derivatives of the Su e protein and expressed them in the Su e null yeast mutant. Mitochondria were isolated from the resulting transformant strains, and a number of functions of Su e were analyzed. Our results indicate that the N-terminal hydrophobic region plays important roles in the Su e-dependent processes of mitochondrial DNA maintenance, modulation of mitochondrial morphology, and stabilization of the dimer-specific Fo subunits, subunits g and k. Furthermore, we show that the C-terminal coiled-coil region of Su e functions to stabilize the dimeric form of detergent-solubilized ATP synthase complexes. Finally, we propose a model to explain how Su e supports the assembly of the ATP synthase dimers-oligomers in the mitochondrial membrane

    Location of catalase in crystalline peroxisomes of methanol-grown Hansenula polymorpha

    Get PDF
    We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.
    corecore