204,799 research outputs found
Influence of synaptic depression on memory storage capacity
Synaptic efficacy between neurons is known to change within a short time
scale dynamically. Neurophysiological experiments show that high-frequency
presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon
is called synaptic depression, a short term synaptic plasticity. Many
researchers have investigated how the synaptic depression affects the memory
storage capacity. However, the noise has not been taken into consideration in
their analysis. By introducing "temperature", which controls the level of the
noise, into an update rule of neurons, we investigate the effects of synaptic
depression on the memory storage capacity in the presence of the noise. We
analytically compute the storage capacity by using a statistical mechanics
technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that
the synaptic depression decreases the storage capacity in the case of finite
temperature in contrast to the case of the low temperature limit, where the
storage capacity does not change
Neural networks with dynamical synapses: from mixed-mode oscillations and spindles to chaos
Understanding of short-term synaptic depression (STSD) and other forms of
synaptic plasticity is a topical problem in neuroscience. Here we study the
role of STSD in the formation of complex patterns of brain rhythms. We use a
cortical circuit model of neural networks composed of irregular spiking
excitatory and inhibitory neurons having type 1 and 2 excitability and
stochastic dynamics. In the model, neurons form a sparsely connected network
and their spontaneous activity is driven by random spikes representing synaptic
noise. Using simulations and analytical calculations, we found that if the STSD
is absent, the neural network shows either asynchronous behavior or regular
network oscillations depending on the noise level. In networks with STSD,
changing parameters of synaptic plasticity and the noise level, we observed
transitions to complex patters of collective activity: mixed-mode and spindle
oscillations, bursts of collective activity, and chaotic behaviour.
Interestingly, these patterns are stable in a certain range of the parameters
and separated by critical boundaries. Thus, the parameters of synaptic
plasticity can play a role of control parameters or switchers between different
network states. However, changes of the parameters caused by a disease may lead
to dramatic impairment of ongoing neural activity. We analyze the chaotic
neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I.,
2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201
Analog hardware for learning neural networks
This is a recurrent or feedforward analog neural network processor having a multi-level neuron array and a synaptic matrix for storing weighted analog values of synaptic connection strengths which is characterized by temporarily changing one connection strength at a time to determine its effect on system output relative to the desired target. That connection strength is then adjusted based on the effect, whereby the processor is taught the correct response to training examples connection by connection
A novel plasticity rule can explain the development of sensorimotor intelligence
Grounding autonomous behavior in the nervous system is a fundamental
challenge for neuroscience. In particular, the self-organized behavioral
development provides more questions than answers. Are there special functional
units for curiosity, motivation, and creativity? This paper argues that these
features can be grounded in synaptic plasticity itself, without requiring any
higher level constructs. We propose differential extrinsic plasticity (DEP) as
a new synaptic rule for self-learning systems and apply it to a number of
complex robotic systems as a test case. Without specifying any purpose or goal,
seemingly purposeful and adaptive behavior is developed, displaying a certain
level of sensorimotor intelligence. These surprising results require no system
specific modifications of the DEP rule but arise rather from the underlying
mechanism of spontaneous symmetry breaking due to the tight
brain-body-environment coupling. The new synaptic rule is biologically
plausible and it would be an interesting target for a neurobiolocal
investigation. We also argue that this neuronal mechanism may have been a
catalyst in natural evolution.Comment: 18 pages, 5 figures, 7 video
Stochastic mean field formulation of the dynamics of diluted neural networks
We consider pulse-coupled Leaky Integrate-and-Fire neural networks with
randomly distributed synaptic couplings. This random dilution induces
fluctuations in the evolution of the macroscopic variables and deterministic
chaos at the microscopic level. Our main aim is to mimic the effect of the
dilution as a noise source acting on the dynamics of a globally coupled
non-chaotic system. Indeed, the evolution of a diluted neural network can be
well approximated as a fully pulse coupled network, where each neuron is driven
by a mean synaptic current plus additive noise. These terms represent the
average and the fluctuations of the synaptic currents acting on the single
neurons in the diluted system. The main microscopic and macroscopic dynamical
features can be retrieved with this stochastic approximation. Furthermore, the
microscopic stability of the diluted network can be also reproduced, as
demonstrated from the almost coincidence of the measured Lyapunov exponents in
the deterministic and stochastic cases for an ample range of system sizes. Our
results strongly suggest that the fluctuations in the synaptic currents are
responsible for the emergence of chaos in this class of pulse coupled networks.Comment: 12 Pages, 4 Figure
- …
