107,529 research outputs found
Novel Artificial Human Optimization Field Algorithms - The Beginning
New Artificial Human Optimization (AHO) Field Algorithms can be created from
scratch or by adding the concept of Artificial Humans into other existing
Optimization Algorithms. Particle Swarm Optimization (PSO) has been very
popular for solving complex optimization problems due to its simplicity. In
this work, new Artificial Human Optimization Field Algorithms are created by
modifying existing PSO algorithms with AHO Field Concepts. These Hybrid PSO
Algorithms comes under PSO Field as well as AHO Field. There are Hybrid PSO
research articles based on Human Behavior, Human Cognition and Human Thinking
etc. But there are no Hybrid PSO articles which based on concepts like Human
Disease, Human Kindness and Human Relaxation. This paper proposes new AHO Field
algorithms based on these research gaps. Some existing Hybrid PSO algorithms
are given a new name in this work so that it will be easy for future AHO
researchers to find these novel Artificial Human Optimization Field Algorithms.
A total of 6 Artificial Human Optimization Field algorithms titled "Human
Safety Particle Swarm Optimization (HuSaPSO)", "Human Kindness Particle Swarm
Optimization (HKPSO)", "Human Relaxation Particle Swarm Optimization (HRPSO)",
"Multiple Strategy Human Particle Swarm Optimization (MSHPSO)", "Human Thinking
Particle Swarm Optimization (HTPSO)" and "Human Disease Particle Swarm
Optimization (HDPSO)" are tested by applying these novel algorithms on Ackley,
Beale, Bohachevsky, Booth and Three-Hump Camel Benchmark Functions. Results
obtained are compared with PSO algorithm.Comment: 25 pages, 41 figure
Efficiency Analysis of Swarm Intelligence and Randomization Techniques
Swarm intelligence has becoming a powerful technique in solving design and
scheduling tasks. Metaheuristic algorithms are an integrated part of this
paradigm, and particle swarm optimization is often viewed as an important
landmark. The outstanding performance and efficiency of swarm-based algorithms
inspired many new developments, though mathematical understanding of
metaheuristics remains partly a mystery. In contrast to the classic
deterministic algorithms, metaheuristics such as PSO always use some form of
randomness, and such randomization now employs various techniques. This paper
intends to review and analyze some of the convergence and efficiency associated
with metaheuristics such as firefly algorithm, random walks, and L\'evy
flights. We will discuss how these techniques are used and their implications
for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with
arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146
Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation
A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’
An Investigation into the Merger of Stochastic Diffusion Search and Particle Swarm Optimisation
This study reports early research aimed at applying the powerful resource allocation mechanism deployed in Stochastic Diffusion Search (SDS) to the Particle Swarm Optimiser (PSO) metaheuristic, effectively merging the two swarm intelligence algorithms. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between particles, has the potential to improve the optimisation capability of conventional PSOs
Firefly Algorithms for Multimodal Optimization
Nature-inspired algorithms are among the most powerful algorithms for
optimization. This paper intends to provide a detailed description of a new
Firefly Algorithm (FA) for multimodal optimization applications. We will
compare the proposed firefly algorithm with other metaheuristic algorithms such
as particle swarm optimization (PSO). Simulations and results indicate that the
proposed firefly algorithm is superior to existing metaheuristic algorithms.
Finally we will discuss its applications and implications for further research
- …
