290,055 research outputs found
Two-Dimensional Flow Nanometry of Biological Nanoparticles for Accurate Determination of Their Size and Emission Intensity
Biological nanoparticles (BNPs) are of high interest due to their key role in
various biological processes and use as biomarkers. BNP size and molecular
composition are decisive for their functions, but simultaneous determination of
both properties with high accuracy remains challenging, which is a severe
limitation. Surface-sensitive microscopy allows one to precisely determine
fluorescence or scattering intensity, but not the size of individual BNPs. The
latter is better determined by tracking their random motion in bulk, but the
limited illumination volume for tracking this motion impedes reliable intensity
determination. We here show that attaching BNPs (specifically, vesicles and
functionalized gold NPs) to a supported lipid bilayer, subjecting them to a
hydrodynamic flow, and tracking their motion via surface-sensitive imaging
enable to determine their diffusion coefficients and flow-induced drift
velocities and to accurately quantify both BNP size and emission intensity. For
vesicles, the high accuracy is demonstrated by resolving the expected
radius-squared dependence of their fluorescence intensity.Comment: 28 pages, 5 figure
Slipping friction of an optically and magnetically manipulated microsphere rolling at a glass-water interface
The motion of submerged magnetic microspheres rolling at a glass-water
interface has been studied using magnetic rotation and optical tweezers
combined with bright-field microscopy particle tracking techniques. Individual
microspheres of varying surface roughness were magnetically rotated both in and
out of an optical trap to induce rolling, along either plain glass cover slides
or glass cover slides functionalized with polyethylene glycol. It has been
observed that the manipulated microspheres exhibited nonlinear dynamic
rolling-while-slipping motion characterized by two motional regimes: At low
rotational frequencies, the speed of microspheres free-rolling along the
surface increased proportionately with magnetic rotation rate; however, a
further increase in the rotation frequency beyond a certain threshold revealed
a sharp transition to a motion in which the microspheres slipped with respect
to the external magnetic field resulting in decreased rolling speeds. The
effects of surface-microsphere interactions on the position of this threshold
frequency are posed and investigated. Similar experiments with microspheres
rolling while slipping in an optical trap showed congruent results.Comment: submitted to Journal of Applied Physics, 11 figure
Dynamics of Attention in Depth: Evidence from Mutli-Element Tracking
The allocation of attention in depth is examined using a multi-element tracking paradigm. Observers are required to track a predefined subset of from two to eight elements in displays containing up to sixteen identical moving elements. We first show that depth cues, such as binocular disparity and occlusion through T-junctions, improve performance in a multi-element tracking task in the case where element boundaries are allowed to intersect in the depiction of motion in a single fronto-parallel plane. We also show that the allocation of attention across two perceptually distinguishable planar surfaces either fronto-parallel or receding at a slanting angle and defined by coplanar elements, is easier than allocation of attention within a single surface. The same result was not found when attention was required to be deployed across items of two color populations rather than of a single color. Our results suggest that, when surface information does not suffice to distinguish between targets and distractors that are embedded in these surfaces, division of attention across two surfaces aids in tracking moving targets.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657
Time persistency of floating particle clusters in free-surface turbulence
We study the dispersion of light particles floating on a flat shear-free
surface of an open channel in which the flow is turbulent. This configuration
mimics the motion of buoyant matter (e.g. phytoplankton, pollutants or
nutrients) in water bodies when surface waves and ripples are smooth or absent.
We perform direct numerical simulation of turbulence coupled with Lagrangian
particle tracking, considering different values of the shear Reynolds number
(Re{\tau} = 171 and 509) and of the Stokes number (0.06 < St < 1 in viscous
units). Results show that particle buoyancy induces clusters that evolve
towards a long-term fractal distribution in a time much longer than the
Lagrangian integral fluid time scale, indicating that such clusters over-live
the surface turbulent structures which produced them. We quantify cluster
dynamics, crucial when modeling dispersion in free-surface flow turbulence, via
the time evolution of the cluster correlation dimension
Learning Task Constraints from Demonstration for Hybrid Force/Position Control
We present a novel method for learning hybrid force/position control from
demonstration. We learn a dynamic constraint frame aligned to the direction of
desired force using Cartesian Dynamic Movement Primitives. In contrast to
approaches that utilize a fixed constraint frame, our approach easily
accommodates tasks with rapidly changing task constraints over time. We
activate only one degree of freedom for force control at any given time,
ensuring motion is always possible orthogonal to the direction of desired
force. Since we utilize demonstrated forces to learn the constraint frame, we
are able to compensate for forces not detected by methods that learn only from
the demonstrated kinematic motion, such as frictional forces between the
end-effector and the contact surface. We additionally propose novel extensions
to the Dynamic Movement Primitive (DMP) framework that encourage robust
transition from free-space motion to in-contact motion in spite of environment
uncertainty. We incorporate force feedback and a dynamically shifting goal to
reduce forces applied to the environment and retain stable contact while
enabling force control. Our methods exhibit low impact forces on contact and
low steady-state tracking error.Comment: Under revie
Probing DNA conformational changes with high temporal resolution by Tethered Particle Motion
The Tethered Particle Motion (TPM) technique informs about conformational
changes of DNA molecules, e.g. upon looping or interaction with proteins, by
tracking the Brownian motion of a particle probe tethered to a surface by a
single DNA molecule and detecting changes of its amplitude of movement. We
discuss in this context the time resolution of TPM, which strongly depends on
the particle-DNA complex relaxation time, i.e. the characteristic time it takes
to explore its configuration space by diffusion. By comparing theory,
simulations and experiments, we propose a calibration of TPM at the dynamical
level: we analyze how the relaxation time grows with both DNA contour length
(from 401 to 2080 base pairs) and particle radius (from 20 to 150~nm). Notably
we demonstrate that, for a particle of radius 20~nm or less, the hydrodynamic
friction induced by the particle and the surface does not significantly slow
down the DNA. This enables us to determine the optimal time resolution of TPM
in distinct experimental contexts which can be as short as 20~ms.Comment: Improved version, to appear in Physical Biology. 10 pages + 10 pages
of supporting materia
Quasi full-disk maps of solar horizontal velocities using SDO/HMI data
For the first time, the motion of granules (solar plasma on the surface on
scales larger than 2.5 Mm) has been followed over the entire visible surface of
the Sun, using SDO/HMI white-light data.
Horizontal velocity fields are derived from image correlation tracking using
a new version of the coherent structure tracking algorithm.The spatial and
temporal resolutions of the horizontal velocity map are 2.5 Mm and 30 min
respectively .
From this reconstruction, using the multi-resolution analysis, one can obtain
to the velocity field at different scales with its derivatives such as the
horizontal divergence or the vertical component of the vorticity. The intrinsic
error on the velocity is ~0.25 km/s for a time sequence of 30 minutes and a
mesh size of 2.5 Mm.This is acceptable compared to the granule velocities,
which range between 0.3 km/s and 1.8 km/s. A high correlation between
velocities computed from Hinode and SDO/HMI has been found (85%). From the data
we derive the power spectrum of the supergranulation horizontal velocity field,
the solar differential rotation, and the meridional velocity.Comment: 8 pages, 11 figures, accepted in Astronomy and Astrophysic
Kassiopeia: A Modern, Extensible C++ Particle Tracking Package
The Kassiopeia particle tracking framework is an object-oriented software
package using modern C++ techniques, written originally to meet the needs of
the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for
particle tracking simulations which targets experiments containing complex
geometries and electromagnetic fields, with high priority put on calculation
efficiency, customizability, extensibility, and ease of use for novice
programmers. To solve Kassiopeia's target physics problem the software is
capable of simulating particle trajectories governed by arbitrarily complex
differential equations of motion, continuous physics processes that may in part
be modeled as terms perturbing that equation of motion, stochastic processes
that occur in flight such as bulk scattering and decay, and stochastic surface
processes occuring at interfaces, including transmission and reflection
effects. This entire set of computations takes place against the backdrop of a
rich geometry package which serves a variety of roles, including initialization
of electromagnetic field simulations and the support of state-dependent
algorithm-swapping and behavioral changes as a particle's state evolves. Thanks
to the very general approach taken by Kassiopeia it can be used by other
experiments facing similar challenges when calculating particle trajectories in
electromagnetic fields. It is publicly available at
https://github.com/KATRIN-Experiment/Kassiopei
- …
