3,956 research outputs found
Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
Nanolaminated materials are important because of their exceptional properties
and wide range of applications. Here, we demonstrate a general approach to
synthesize a series of Zn-based MAX phases and Cl-terminated MXenes originating
from the replacement reaction between the MAX phase and the late transition
metal halides. The approach is a top-down route that enables the late
transitional element atom (Zn in the present case) to occupy the A site in the
pre-existing MAX phase structure. Using this replacement reaction between Zn
element from molten ZnCl2 and Al element in MAX phase precursors (Ti3AlC2,
Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC
were synthesized. When employing excess ZnCl2, Cl terminated MXenes (such as
Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and
Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate
that A-site element replacement in traditional MAX phases by late transition
metal halides opens the door to explore MAX phases that are not
thermodynamically stable at high temperature and would be difficult to
synthesize through the commonly employed powder metallurgy approach. In
addition, this is the first time that exclusively Cl-terminated MXenes were
obtained, and the etching effect of Lewis acid in molten salts provides a green
and viable route to prepare MXenes through an HF-free chemical approach.Comment: Title changed; experimental section and discussion revise
The thermal and electrical properties of the promising semiconductor MXene Hf2CO2
In this work, we investigate the thermal and electrical properties of
oxygen-functionalized M2CO2 (M = Ti, Zr, Hf) MXenes using first-principles
calculations. Hf2CO2 is found to exhibit a thermal conductivity better than
MoS2 and phosphorene. The room temperature thermal conductivity along the
armchair direction is determined to be 86.25-131.2 Wm-1K-1 with a flake length
of 5-100 um, and the corresponding value in the zigzag direction is
approximately 42% of that in the armchair direction. Other important thermal
properties of M2CO2 are also considered, including their specific heat and
thermal expansion coefficients. The theoretical room temperature thermal
expansion coefficient of Hf2CO2 is 6.094x10-6 K-1, which is lower than that of
most metals. Moreover, Hf2CO2 is determined to be a semiconductor with a band
gap of 1.657 eV and to have high and anisotropic carrier mobility. At room
temperature, the Hf2CO2 hole mobility in the armchair direction (in the zigzag
direction) is determined to be as high as 13.5x103 cm2V-1s-1 (17.6x103
cm2V-1s-1), which is comparable to that of phosphorene. Broader utilization of
Hf2CO2 as a material for nanoelectronics is likely because of its moderate band
gap, satisfactory thermal conductivity, low thermal expansion coefficient, and
excellent carrier mobility. The corresponding thermal and electrical properties
of Ti2CO2 and Zr2CO2 are also provided here for comparison. Notably, Ti2CO2
presents relatively low thermal conductivity and much higher carrier mobility
than Hf2CO2, which is an indication that Ti2CO2 may be used as an efficient
thermoelectric material.Comment: 26 pages, 5 figures, 2 table
Two-Dimensional Oxide Topological Insulator With Iron-Pnictide Superconductor LiFeAs Structure
By using first-principles calculations, we propose that ZrSiO can be looked
as a three-dimensional (3D) oxide weak topological insulator (TI) and its
single layer is a long-sought-after 2D oxide TI with a band gap up to 30 meV.
Calculated phonon spectrum of the single layer ZrSiO indicates it is
dynamically stable and the experimental achievements in growing oxides with
atomic precision ensure that it can be readily synthesized. This will lead to
novel devices based on TIs, the so called "topotronic" devices, operating under
room-temperature and stable when exposed in the air. Thus, a new field of
"topotronics" will arise. Another intriguing thing is this oxide 2D TI has the
similar crystal structure as the well-known iron-pnictide superconductor
LiFeAs. This brings great promise in realizing the combination of
superconductor and TI, paving the way to various extraordinary quantum
phenomena, such as topological superconductor and Majorana modes. We further
find that there are many other isostructural compounds hosting the similar
electronic structure and forming a -family with being Zr, Hf or La,
being group IV or group V element, and being group VI one.Comment: adding results of phonon spectrum, supported substrate and binding
energy. Related with our recent preprints for 2D TIs: arXiv:1507.01172,
arXiv:1503.09040 and arXiv:1508.0522
Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment
Chitosan, a derivative of chitin, is a biodegradable polymer known of its favorable properties, applicable in medicine and industry. Commonly obtained chitosan hydrogels are of various swelling capacity, and may bind only anions losing their susceptibility to biodegradation. Hydrogels are mostly obtained using toxic crosslinkers, which pollute environment due to waste generation during their synthesis. In the present article a novel, waste-free method for obtaining chitosan hydrogels under microwave irradiation, is described. Their chemical and morphological structure, swelling properties, sorption capability of a model dye and cadmium ions are described, and kinetic studies, were carried out. Biodegradability of the obtained hydrogels was investigated with the Sturm Test method. As a result, multifunctional chitosan hydrogels with both negative and positive surface charges and increased ability of anions and cations binding, were obtained. Materials were fully biodegradable, capable to absorb high amounts of water, as well as to remove various water contaminants.Web of Science111081980
Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications
Silicene is a promising electrode material for Li-ion batteries due to its high Li capacity and low Li diffusion barrier. Germanene is expected to show a similar performance due to its analogous structural and electronic properties. However, the performance of both the materials will be determined by the substrate, since freestanding configurations are unstable. We propose Si/MgX2 and Ge/MgX2 (X = Cl, Br, and I) as suitable hybrid structures, based on first-principles calculations. We find that Li will not cluster and that the Li capacity is very high (443 and 279 mA h g−1 for silicene and germanene on MgCl2, respectively). Sandwich structures can be used to further enhance the performance. Low diffusion barriers of less than 0.3 eV are predicted for all the hybrid structures
Recommended from our members
Correlating Interlayer Spacing and Separation Capability of Graphene Oxide Membranes in Organic Solvents.
Membranes synthesized by stacking two-dimensional graphene oxide (GO) hold great promise for applications in organic solvent nanofiltration. However, the performance of a layer-stacked GO membrane in organic solvent nanofiltration can be significantly affected by its swelling and interlayer spacing, which have not been systematically characterized. In this study, the interlayer spacing of the layer-stacked GO membrane in different organic solvents was experimentally characterized by liquid-phase ellipsometry. To understand the swelling mechanism, the solubility parameters of GO were experimentally determined and used to mathematically predict the Hansen solubility distance between GO and solvents, which is found to be a good predictor for GO swelling and interlayer spacing. Solvents with a small solubility distance (e.g., dimethylformamide, N-methyl-2-pyrrolidone) tend to cause significant GO swelling, resulting in an interlayer spacing of up to 2.7 nm. Solvents with a solubility distance larger than 9.5 (e.g., ethanol, acetone, hexane, and toluene) only cause minor swelling and are thus able to maintain an interlayer spacing of around 1 nm. Correspondingly, GO membranes in solvents with a large solubility distance exhibit good separation performance, for example, rejection of more than 90% of the small organic dye molecules (e.g., rhodamine B and methylene blue) in ethanol and acetone. Additionally, solvents with a large solubility distance result in a high slip velocity in GO channels and thus high solvent flux through the GO membrane. In summary, the GO membrane performs better in solvents that are unlike GO, i.e., solvents with large solubility distance
- …
