1,700,246 research outputs found

    Energy density in density functional theory: Application to crystalline defects and surfaces

    Full text link
    We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transformation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.Comment: 25 pages, 6 figure

    Local and Global Casimir Energies for a Semitransparent Cylindrical Shell

    Get PDF
    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ\lambda\delta-function potential in a 3+1 dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak-coupling,through O(λ2)\mathcal{O}(\lambda^2), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the delta-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ3)\mathcal{O}(\lambda^3), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy, and does {\em not} reflect divergences in the local energy density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative divergence

    S-wave superconductivity near a surface

    Full text link
    We study the superconducting order parameter near a surface with the Bogoliubov-de Gennes formalism. For definiteness we use the attractive Hubbard model. Near a surface, the order parameter and the density distribution exhibit ``Friedel-like'' oscillations. Although the local density of states is quite different from that in the bulk, the energy gap in the spectrum on a surface is almost the same as the bulk value. In the low-density limit, however, the energy gap tends to vanish on a surface.Comment: 9 pages, 13 figure

    3D spatially-resolved optical energy density enhanced by wavefront shaping

    Get PDF
    We study the three-dimensional (3D) spatially-resolved distribution of the energy density of light in a 3D scattering medium upon the excitation of open transmission channels. The open transmission channels are excited by spatially shaping the incident optical wavefronts. To probe the local energy density, we excite isolated fluorescent nanospheres distributed inside the medium. From the spatial fluorescent intensity pattern we obtain the position of each nanosphere, while the total fluorescent intensity gauges the energy density. Our 3D spatially-resolved measurements reveal that the local energy density versus depth (z) is enhanced up to 26X at the back surface of the medium, while it strongly depends on the transverse (x; y) position. We successfully interpret our results with a newly developed 3D model that considers the time-reversed diffusion starting from a point source at the back surface. Our results are relevant for white LEDs, random lasers, solar cells, and biomedical optics

    High-Level Correlated Approach to the Jellium Surface Energy, Without Uniform-Electron-Gas Input

    Full text link
    We resolve the long-standing controversy over the surface energy of simple metals: Density functional methods that require uniform-electron-gas input agree with each other at many levels of sophistication, but not with high-level correlated calculations like Fermi Hypernetted Chain and Diffusion Monte Carlo (DMC) that predict the uniform-gas correlation energy. Here we apply a very high-level correlated approach, the inhomogeneous Singwi-Tosi-Land-Sj\"olander (ISTLS) method, and find that the density functionals are indeed reliable (because the surface energy is "bulk-like"). ISTLS values are close to recently-revised DMC values. Our work also vindicates the previously-disputed use of uniform-gas-based nonlocal kernels in time-dependent density functional theory.Comment: 4 pages, 1 figur

    Evolution of anodic stress corrosion cracking in a coated material

    Get PDF
    In the present paper, we investigate the influence of corrosion driving forces and interfacial toughness for a coated material subjected to mechanical loading. If the protective coating is cracked, the substrate material may become exposed to a corrosive media. For a stress corrosion sensitive substrate material, this may lead to detrimental crack growth. A crack is assumed to grow by anodic dissolution, inherently leading to a blunt crack tip. The evolution of the crack surface is modelled as a moving boundary problem using an adaptive finite element method. The rate of dissolution along the crack surface in the substrate is assumed to be proportional to the chemical potential, which is function of the local surface energy density and elastic strain energy density. The surface energy tends to flatten the surface, whereas the strain energy due to stress concentration promotes material dissolution. The influence of the interface energy density parameter for the solid–fluid combination, interface corrosion resistance and stiffness ratios between coating and substrate is investigated. Three characteristic crack shapes are obtained; deepening and narrowing single cracks, branched cracks and sharp interface cracks. The crack shapes obtained by our simulations are similar to real sub-coating cracks reported in the literature
    corecore