4,939,267 research outputs found
Stochastic analysis of surface roughness
For the characterization of surface height profiles we present a new
stochastic approach which is based on the theory of Markov processes. With this
analysis we achieve a characterization of the complexity of the surface
roughness by means of a Fokker-Planck or Langevin equation, providing the
complete stochastic information of multiscale joint probabilities. The method
was applied to different road surface profiles which were measured with high
resolution. Evidence of Markov properties is shown. Estimations for the
parameters of the Fokker-Planck equation are based on pure, parameter free data
analysis
Materials surface contamination analysis
The original research objective was to demonstrate the ability of optical fiber spectrometry to determine contamination levels on solid rocket motor cases in order to identify surface conditions which may result in poor bonds during production. The capability of using the spectral features to identify contaminants with other sensors which might only indicate a potential contamination level provides a real enhancement to current inspection systems such as Optical Stimulated Electron Emission (OSEE). The optical fiber probe can easily fit into the same scanning fixtures as the OSEE. The initial data obtained using the Guided Wave Model 260 spectrophotometer was primarily focused on determining spectra of potential contaminants such as HD2 grease, silicones, etc. However, once we began taking data and applying multivariate analysis techniques, using a program that can handle very large data sets, i.e., Unscrambler 2, it became apparent that the techniques also might provide a nice scientific tool for determining oxidation and chemisorption rates under controlled conditions. As the ultimate power of the technique became recognized, considering that the chemical system which was most frequently studied in this work is water + D6AC steel, we became very interested in trying the spectroscopic techniques to solve a broad range of problems. The complexity of the observed spectra for the D6AC + water system is due to overlaps between the water peaks, the resulting chemisorbed species, and products of reaction which also contain OH stretching bands. Unscrambling these spectral features, without knowledge of the specific species involved, has proven to be a formidable task
Tribological applications of surface analysis
For some years, surface analysis was used in fundamental studies of solid-solid contacts existing in tribological systems. Analysis was used to detect material transfer in sliding contacts. The effects of surface films on the adhesion of contacts was monitored. Finally electron spectroscopic analysis of interfaces has shed some light on the fundamental electronic nature of the interfacial bond. More recently, surface analysis was applied to many tribological engineering problems. In particular, identification of chemical films formed during the sliding contact of lubricated systems and study of the surface chemistry of lubricant additives were active areas of research. One or more of four properties of the analytical technique will be important in determining its utility. The four are: lateral resolution, specimen damage, depth resolution and the availability of chemical information. In each of the applications discussed here, the important factors are brought out
Analysis of surface ablation of noncharring materials
Computer program solves combined problem of heat transfer and material response for the stagnation region of blunt bodies experiencing melting and vaporizing or subliming ablation. Program contains formulas for the transitional regime to bridge between the free-molecule and continuum regimes
Strong anisotropy in surface kinetic roughening: analysis and experiments
We report an experimental assessment of surface kinetic roughening properties
that are anisotropic in space. Working for two specific instances of silicon
surfaces irradiated by ion-beam sputtering under diverse conditions (with and
without concurrent metallic impurity codeposition), we verify the predictions
and consistency of a recently proposed scaling Ansatz for surface observables
like the two-dimensional (2D) height Power Spectral Density (PSD). In contrast
with other formulations, this Ansatz is naturally tailored to the study of
two-dimensional surfaces, and allows to readily explore the implications of
anisotropic scaling for other observables, such as real-space correlation
functions and PSD functions for 1D profiles of the surface. Our results confirm
that there are indeed actual experimental systems whose kinetic roughening is
strongly anisotropic, as consistently described by this scaling analysis. In
the light of our work, some types of experimental measurements are seen to be
more affected by issues like finite space resolution effects, etc. that may
hinder a clear-cut assessment of strongly anisotropic scaling in the present
and other practical contexts
- …
