51,686 research outputs found

    Interplay between Swelling Kinetics and Nanostructure in Perfluorosulfonic Acid Thin-Films: Role of Hygrothermal Aging

    Get PDF
    Impacts of processing, storage, and operation on thin-film perfluorosulfonic acid (PFSA) ionomer coatings used in electrodes of electrochemical devices remains unestablished. In this work, alteration of structure-function relationship in ionomers is achieved via exposure to elevated temperature and humidity (hygrothermal aging). Findings reflect a strong inverse correlation between aging-induced ionomer thin-film domain orientation and water-transport kinetics evaluated from swelling. Impact of aging is shown to be more pronounced on platinum due to interactions with PFSA, as evidenced by greater increase in nanodomain orientation parallel to substrate accompanied by reduced water transport, in contrast to silicon support

    AFM study of strawberry pectin nanostructure and its relevance on fruit texture

    Get PDF
    Atomic force microscopy (AFM) has been used to characterize the nanostructure of cell wall pectins during strawberry fruit growth and ripening, as well as in transgenic fruits with pectinase genes downregulated. This technique allows the imaging of individual polymers at high magnification with minimal sample preparation. AFM studies during fruit development show that pectin size, ramification and aggregation is reduced in ripe fruits. Additionally, transgenic lines with different pectinase genes downregulated (polygalacturonase, pectate lyase and B-galactosidase) also show a more complex pectin nanostructure, including longer chains, higher branching degree and larger presence of aggregates. In all those cases the higher pectin complexity at nanoscale correlates with a reduced softening in strawberry fruits at macroscale level. Globally, our results support the key role of pectins in fruit structure and highlights the use of AFM as a powerful tool to gain insights about the bases of textural fruit quality not only in strawberry, but also in other commercial crops.AGL2017-86531-C2-1-R, Ministerio de Economía, Industria y Competitividad of Spain and FEDER EU funds. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure

    Get PDF
    Physically cross-linked, fibrillar hydrogel networks are formed by the self-assembly of β-hairpin peptide molecules with varying degrees of strand asymmetry. The peptide registry in the self-assembled state can be used as a design element to generate fibrils with twisting, nontwisting, or laminated morphology. The mass density of the networks varies significantly, and can be directly related to the local fibrillar morphology as evidenced by small angle neutron scattering (SANS) and in situ substantiation using cryogenic transmission electron microscopy (cryo-TEM) under identical concentrations and conditions. Similarly, the density of the network is dependent on changes in the peptide concentration. Bulk rheological properties of the hydrogels can be correlated to the fibrillar nanostructure, with the stiffer, laminated fibrils forming networks with a higher G′ as compared to the flexible, singular fibrillar networks

    Strong enhancement of transport by interaction on contact links

    Get PDF
    Strong repulsive interactions within a one dimensional Fermi system in a two-probe configuration normally lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact regions, a strong increase of the conductance may occur, even for systems where one would expect to find a reduced conductance. An essential ingredient in our calculations is a momentum-space representation of the leads, which allows a high energy resolution. Further, we demonstrate that these results are independent of the high-energy cutoff and that the relevant scale is set by the Fermi velocity.Comment: Published version -- references correcte

    The application of thermal analysis to the study of epoxy–clay nanocomposites

    Get PDF
    This is a copy of the author 's final draft version of an article published in the journal Journal of thermal analysis and calorimetry. The final publication is available at Springer via http://dx.doi.org/10.1007/s10973-016-5278-0The development of polymer layered silicate (PLS) nanocomposites goes back over 20 years now, and yet they still have not achieved their full potential. A principal reason for this is the difficulty of obtaining a truly exfoliated nanostructure. The fabrication procedure for such PLS nanocomposites based upon epoxy resin includes several stages, including dispersion of the clay in the resin, intercalation of the resin into the clay galleries, and finally curing of the nanocomposite system. Many attempts have been made to improve the degree of exfoliation in the final nanostructure by modifying the procedures involved in these fabrication stages, and the usual approach is to examine the nanostructure, by techniques such as small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), as a function of the fabrication procedure. We show here, however, that thermal analytical techniques, and in particular differential scanning calorimetry, can complement the techniques of SAXS and TEM in the search for ways in which to achieve improved degrees of exfoliation in PLS nanocomposites based upon epoxy resin.Peer ReviewedPostprint (author's final draft
    corecore