1,197 research outputs found
Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications
We extend the work of Narasimhan and Bilmes [30] for minimizing set functions
representable as a difference between submodular functions. Similar to [30],
our new algorithms are guaranteed to monotonically reduce the objective
function at every step. We empirically and theoretically show that the
per-iteration cost of our algorithms is much less than [30], and our algorithms
can be used to efficiently minimize a difference between submodular functions
under various combinatorial constraints, a problem not previously addressed. We
provide computational bounds and a hardness result on the mul- tiplicative
inapproximability of minimizing the difference between submodular functions. We
show, however, that it is possible to give worst-case additive bounds by
providing a polynomial time computable lower-bound on the minima. Finally we
show how a number of machine learning problems can be modeled as minimizing the
difference between submodular functions. We experimentally show the validity of
our algorithms by testing them on the problem of feature selection with
submodular cost features.Comment: 17 pages, 8 figures. A shorter version of this appeared in Proc.
Uncertainty in Artificial Intelligence (UAI), Catalina Islands, 201
Information Structure Design in Team Decision Problems
We consider a problem of information structure design in team decision
problems and team games. We propose simple, scalable greedy algorithms for
adding a set of extra information links to optimize team performance and
resilience to non-cooperative and adversarial agents. We show via a simple
counterexample that the set function mapping additional information links to
team performance is in general not supermodular. Although this implies that the
greedy algorithm is not accompanied by worst-case performance guarantees, we
illustrate through numerical experiments that it can produce effective and
often optimal or near optimal information structure modifications
- …
