9,931 research outputs found

    A Time-Dependent Dirichlet-Neumann Method for the Heat Equation

    Full text link
    We present a waveform relaxation version of the Dirichlet-Neumann method for parabolic problem. Like the Dirichlet-Neumann method for steady problems, the method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves with Neumann boundary conditions. However, each subdomain problem is now in space and time, and the interface conditions are also time-dependent. Using a Laplace transform argument, we show for the heat equation that when we consider finite time intervals, the Dirichlet-Neumann method converges, similar to the case of Schwarz waveform relaxation algorithms. The convergence rate depends on the length of the subdomains as well as the size of the time window. In this discussion, we only stick to the linear bound. We illustrate our results with numerical experiments.Comment: 9 pages, 5 figures, Lecture Notes in Computational Science and Engineering, Vol. 98, Springer-Verlag 201

    A Bregman forward-backward linesearch algorithm for nonconvex composite optimization: superlinear convergence to nonisolated local minima

    Full text link
    We introduce Bella, a locally superlinearly convergent Bregman forward backward splitting method for minimizing the sum of two nonconvex functions, one of which satisfying a relative smoothness condition and the other one possibly nonsmooth. A key tool of our methodology is the Bregman forward-backward envelope (BFBE), an exact and continuous penalty function with favorable first- and second-order properties, and enjoying a nonlinear error bound when the objective function satisfies a Lojasiewicz-type property. The proposed algorithm is of linesearch type over the BFBE along candidate update directions, and converges subsequentially to stationary points, globally under a KL condition, and owing to the given nonlinear error bound can attain superlinear convergence rates even when the limit point is a nonisolated minimum, provided the directions are suitably selected

    Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems

    Full text link
    We obtain new oscillation and gradient bounds for the viscosity solutions of fully nonlinear degenerate elliptic equations where the Hamiltonian is a sum of a sublinear and a superlinear part in the sense of Barles and Souganidis (2001). We use these bounds to study the asymptotic behavior of weakly coupled systems of fully nonlinear parabolic equations. Our results apply to some "asymmetric systems" where some equations contain a sublinear Hamiltonian whereas the others contain a superlinear one. Moreover, we can deal with some particular case of systems containing some degenerate equations using a generalization of the strong maximum principle for systems
    corecore