139,629 research outputs found
Correlation between intercalated magnetic layers and superconductivity in pressurized EuFe2(As0.81P0.19)2
We report comprehensive high pressure studies on correlation between
intercalated magnetic layers and superconductivity in EuFe2(As0.81P0.19)2
single crystal through in-situ high pressure resistance, specific heat, X-ray
diffraction and X-ray absorption measurements. We find that an unconfirmed
magnetic order of the intercalated layers coexists with superconductivity in a
narrow pressure range 0-0.5GPa, and then it converts to a ferromagnetic (FM)
order at pressure above 0.5 GPa, where its superconductivity is absent. The
obtained temperature-pressure phase diagram clearly demonstrates that the
unconfirmed magnetic order can emerge from the superconducting state. In stark
contrast, the superconductivity cannot develop from the FM state that is
evolved from the unconfirmed magnetic state. High pressure X-ray absorption
(XAS) measurements reveal that the pressure-induced enhancement of Eu's mean
valence plays an important role in suppressing the superconductivity and tuning
the transition from the unconfirmed magnetic state to a FM state. The unusual
interplay among valence state of Eu ions, magnetism and superconductivity under
pressure may shed new light on understanding the role of the intercalated
magnetic layers in Fe-based superconductors
Mesoscopic Phase Separation in Anisotropic Superconductors
General properties of anisotropic superconductors with mesoscopic phase
separation are analysed. The main conclusions are as follows: Mesoscopic phase
separation can be thermodynamically stable only in the presence of repulsive
Coulomb interactions. Phase separation enables the appearance of
superconductivity in a heterophase sample even if it were impossible in
pure-phase matter. Phase separation is crucial for the occurrence of
superconductivity in bad conductors. Critical temperature for a mixture of
pairing symmetries is higher than the critical temperature related to any pure
gap-wave symmetry of this mixture. In bad conductors, the critical temperature
as a function of the superconductivity fraction has a bell shape. Phase
separation makes the single-particle energy dispersion softer. For planar
structures phase separation suppresses d-wave superconductivity and enhances
s-wave superconductivity. These features are in agreement with experiments for
cuprates.Comment: Revtex file, 25 pages, 2 figure
Assembling the puzzle of superconducting elements: A Review
Superconductivity in the simple elements is of both technological relevance
and fundamental scientific interest in the investigation of superconductivity
phenomena. Recent advances in the instrumentation of physics under pressure
have enabled the observation of superconductivity in many elements not
previously known to superconduct, and at steadily increasing temperatures. This
article offers a review of the state of the art in the superconductivity of
elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc.
Sci. Techno
- …
