408 research outputs found

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    The hospitals/residents problem with ties

    Get PDF
    The hospitals/residents problem is an extensively-studied many-one stable matching problem. Here, we consider the hospitals/residents problem where ties are allowed in the preference lists. In this extended setting, a number of natural definitions for a stable matching arise. We present the first linear-time algorithm for the problem under the strongest of these criteria, so-called super-stability . Our new results have applications to large-scale matching schemes, such as the National Resident Matching Program in the US, and similar schemes elsewhere

    The stable roommates problem with ties

    Get PDF
    We study the variant of the well-known stable roommates problem in which participants are permitted to express ties in their preference lists. In this setting, more than one definition of stability is possible. Here we consider two of these stability criteria, so-called super-stability and weak stability. We present a linear–time algorithm for finding a super-stable matching if one exists, given a stable roommates instance with ties. This contrasts with the known NP-hardness of the analogous problem under weak stability. We also extend our algorithm to cope with preference lists that are incomplete and/or partially ordered. On the other hand, for a given stable roommates instance with ties and incomplete lists, we show that the weakly stable matchings may be of different sizes and the problem of finding a maximum cardinality weakly stable matching is NP-hard, though approximable within a factor of 2

    Explicit solution for vibrating bar with viscous boundaries and internal damper

    Full text link
    We investigate longitudinal vibrations of a bar subjected to viscous boundary conditions at each end, and an internal damper at an arbitrary point along the bar's length. The system is described by four independent parameters and exhibits a variety of behaviors including rigid motion, super stability/instability and zero damping. The solution is obtained by applying the Laplace transform to the equation of motion and computing the Green's function of the transformed problem. This leads to an unconventional eigenvalue-like problem with the spectral variable in the boundary conditions. The eigenmodes of the problem are necessarily complex-valued and are not orthogonal in the usual inner product. Nonetheless, in generic cases we obtain an explicit eigenmode expansion for the response of the bar to initial conditions and external force. For some special values of parameters the system of eigenmodes may become incomplete, or no non-trivial eigenmodes may exist at all. We thoroughly analyze physical and mathematical reasons for this behavior and explicitly identify the corresponding parameter values. In particular, when no eigenmodes exist, we obtain closed form solutions. Theoretical analysis is complemented by numerical simulations, and analytic solutions are compared to computations using finite elements.Comment: 29 pages, 6 figure

    Preference Elicitation in Matching Markets Via Interviews: A Study of Offline Benchmarks

    Get PDF
    The stable marriage problem and its extensions have been extensively studied, with much of the work in the literature assuming that agents fully know their own preferences over alternatives. This assumption however is not always practical (especially in large markets) and agents usually need to go through some costly deliberation process in order to learn their preferences. In this paper we assume that such deliberations are carried out via interviews, where an interview involves a man and a woman, each of whom learns information about the other as a consequence. If everybody interviews everyone else, then clearly agents can fully learn their preferences. But interviews are costly, and we may wish to minimize their use. It is often the case, especially in practical settings, that due to correlation between agents’ preferences, it is unnecessary for all potential interviews to be carried out in order to obtain a stable matching. Thus the problem is to find a good strategy for interviews to be carried out in order to minimize their use, whilst leading to a stable matching. One way to evaluate the performance of an interview strategy is to compare it against a na¨ıve algorithm that conducts all interviews. We argue however that a more meaningful comparison would be against an optimal offline algorithm that has access to agents’ preference orderings under complete information. We show that, unless P=NP, no offline algorithm can compute the optimal interview strategy in polynomial time. If we are additionally aiming for a particular stable matching (perhaps one with certain desirable properties), we provide restricted settings under which efficient optimal offline algorithms exist
    corecore