546,422 research outputs found
First-Class Subtypes
First class type equalities, in the form of generalized algebraic data types
(GADTs), are commonly found in functional programs. However, first-class
representations of other relations between types, such as subtyping, are not
yet directly supported in most functional programming languages.
We present several encodings of first-class subtypes using existing features
of the OCaml language (made more convenient by the proposed modular implicits
extension), show that any such encodings are interconvertible, and illustrate
the utility of the encodings with several examples.Comment: In Proceedings ML 2017, arXiv:1905.0590
Pan-urologic cancer genomic subtypes that transcend tissue of origin
AbstractUrologic cancers include cancers of the bladder, kidney, prostate, and testes, with common molecular features spanning different types. Here, we show that 1954 urologic cancers can be classified into nine major genomic subtypes, on the basis of multidimensional and comprehensive molecular characterization (including DNA methylation and copy number, and RNA and protein expression). Tissue dominant effects are first removed computationally in order to define these subtypes, which reveal common processes—reflecting in part tumor microenvironmental influences—driving cellular behavior across tumor lineages. Six of the subtypes feature a mixture of represented cancer types as defined by tissue or cell of origin. Differences in patient survival and in the manifestation of specific pathways—including hypoxia, metabolism, NRF2-ARE, Hippo, and immune checkpoint—can further distinguish the subtypes. Immune checkpoint markers and molecular signatures of macrophages and T cell infiltrates are relatively high within distinct subsets of each cancer type studied. The pan-urologic cancer genomic subtypes would facilitate information sharing involving therapeutic implications between tissue-oriented domains.</jats:p
Recommended from our members
Physiological, behavioral and subjective sadness reactivity in frontotemporal dementia subtypes.
Frontotemporal dementia (FTD), a neurodegenerative disease broadly characterized by socioemotional impairments, includes three clinical subtypes: behavioral variant FTD (bvFTD), semantic variant primary progressive aphasia (svPPA) and non-fluent variant primary progressive aphasia (nfvPPA). Emerging evidence has shown emotional reactivity impairments in bvFTD and svPPA, whereas emotional reactivity in nfvPPA is far less studied. In 105 patients with FTD (49 bvFTD, 31 svPPA and 25 nfvPPA) and 27 healthy controls, we examined three aspects of emotional reactivity (physiology, facial behavior and subjective experience) in response to a sad film. In a subset of the sample, we also examined the neural correlates of diminished aspects of reactivity using voxel-based morphometry. Results indicated that all three subtypes of FTD showed diminished physiological responding in respiration rate and diastolic blood pressure; patients with bvFTD and svPPA also showed diminished subjective experience, and no subtypes showed diminished facial behavior. Moreover, there were differences among the clinical subtypes in brain regions where smaller volumes were associated with diminished sadness reactivity. These results show that emotion impairments extend to sadness reactivity in FTD and underscore the importance of considering different aspects of sadness reactivity in multiple clinical subtypes for characterizing emotional deficits and associated neurodegeneration in FTD
What Can Quantitative Gait Analysis Tell Us about Dementia and Its Subtypes? A Structured Review
Distinguishing dementia subtypes can be difficult due to similarities in clinical presentation. There is increasing interest in discrete gait characteristics as markers to aid diagnostic algorithms in dementia. This structured review explores the differences in quantitative gait characteristics between dementia and healthy controls, and between four dementia subtypes under single-task conditions: Alzheimer’s disease (AD), dementia with Lewy bodies and Parkinson’s disease dementia, and vascular dementia. Twenty-six papers out of an initial 5,211 were reviewed and interpreted using a validated model of gait. Dementia was associated with gait characteristics grouped by slower pace, impaired rhythm, and increased variability compared to normal aging. Only four studies compared two or more dementia subtypes. People with AD are less impaired in pace, rhythm, and variability domains of gait compared to non-AD dementias. Results demonstrate the potential of gait as a clinical marker to discriminate between dementia subtypes. Larger studies using a more comprehensive battery of gait characteristics and better characterized dementia sub-types are required
Recombination confounds the early evolutionary history of human immunodeficiency virus type 1: Subtype G is a circulating recombinant form
Human immunodeficiency virus type I (HIV-1) is classified in nine subtypes (A to D, F, G, H, J, and K), a number of subsubtypes, and several circulating recombinant forms (CRFs). Due to the high level of genetic diversity within HIV-1 and to its worldwide distribution, this classification system is widely used in fields as diverse as vaccine development, evolution, epidemiology, viral fitness, and drug resistance. Here, we demonstrate how the high recombination rates of HIV-1 may confound the study of its evolutionary history and classification. Our data show that subtype G, currently classified as a pure subtype, has in fact a recombinant history, having evolved following recombination between subtypes A and J and a putative subtype G parent. In addition, we find no evidence for recombination within one of the lineages currently classified as a CRF, CRF02 -AG. Our analysis indicates that CRF02_AG was the parent of the recombinant subtype G, rather than the two having the opposite evolutionary relationship, as is currently proposed. Our results imply that the current classification of HIV-1 subtypes and CRFs is an artifact of sampling history, rather than reflecting the evolutionary history of the virus. We suggest a reanalysis of all pure subtypes and CRFs in order to better understand how high rates of recombination have influenced HIV-1 evolutionary history.</p
Impact of breast cancer subtypes on 3-year survival among adolescent and young adult women.
IntroductionYoung women have poorer survival after breast cancer than do older women. It is unclear whether this survival difference relates to the unique distribution of hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2)-defined molecular breast cancer subtypes among adolescent and young adult (AYA) women aged 15 to 39 years. The purpose of our study was to examine associations between breast cancer subtypes and short-term survival in AYA women, as well as to determine whether the distinct molecular subtype distribution among AYA women explains the unfavorable overall breast cancer survival statistics reported for AYA women compared with older women.MethodsData for 5,331 AYA breast cancers diagnosed between 2005 and 2009 were obtained from the California Cancer Registry. Survival by subtype (triple-negative; HR+/HER2-; HR+/HER2+; HR-/HER2+) and age-group (AYA versus 40- to 64-year-olds) was analyzed with Cox proportional hazards regression with follow-up through 2010.ResultsWith up to 6 years of follow-up and a mean survival time of 3.1 years (SD = 1.5 years), AYA women diagnosed with HR-/HER + and triple-negative breast cancer experienced a 1.6-fold and 2.7-fold increased risk of death, respectively, from all causes (HR-/HER + hazard ratio: 1.55; 95% confidence interval (CI): 1.10 to 2.18; triple-negative HR: 2.75; 95% CI, 2.06 to 3.66) and breast cancer (HR-/HER + hazard ratio: 1.63; 95% CI, 1.12 to 2.36; triple-negative hazard ratio: 2.71; 95% CI, 1.98 to 3.71) than AYA women with HR+/HER2- breast cancer. AYA women who resided in lower socioeconomic status neighborhoods, had public health insurance, and were of Black, compared with White, race/ethnicity experienced worse survival. This race/ethnicity association was attenuated somewhat after adjusting for breast cancer subtypes (hazard ratio, 1.33; 95% CI, 0.98 to 1.82). AYA women had similar all-cause and breast cancer-specific short-term survival as older women for all breast cancer subtypes and across all stages of disease.ConclusionsAmong AYA women with breast cancer, short-term survival varied by breast cancer subtypes, with the distribution of breast cancer subtypes explaining some of the poorer survival observed among Black, compared with White, AYA women. Future studies should consider whether distribution of breast cancer subtypes and other factors, including differential receipt of treatment regimens, influences long-term survival in young compared with older women
- …
