131,457 research outputs found

    Convolved Substructure: Analytically Decorrelating Jet Substructure Observables

    Full text link
    A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D2D_2 observable and perform an illustrative case study using a search for a light hadronically decaying ZZ'. We find that the CSS approach completely decorrelates the D2D_2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.Comment: 20 pages, 11 figures. v2. Corrected typo in legend in Figure 5. Updated Figure 11, minor modification to conclusions on discrimination power. v3. Updated to published version. Minor typos correcte

    Signatures of LCDM substructure in tidal debris

    Full text link
    In the past decade, surveys of the stellar component of the Galaxy have revealed a number of streams from tidally disrupted dwarf galaxies and globular clusters. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the effects of dark matter substructure on tidal streams by simulating the disruption of a self-gravitating satellite on a wide range of orbits in different host models both with and without substructure. We find that the halo shape and the specific orbital path more strongly determine the overall degree of disruption of the satellite than does the presence or absence of substructure, i.e., the changes in the large-scale properties of the tidal debris due to substructure are small compared to variations in the debris from different orbits in a smooth potential. Substructure typically leads to an increase in the degree of clumpiness of the tidal debris in sky projection, and in some cases a more compact distribution in line-of-sight velocity. Substructure also leads to differences in the location of sections of debris compared to the results of the smooth halo model, which may have important implications for the interpretation of observed tidal streams. A unique signature of the presence of substructure in the halo which may be detectable by upcoming surveys is identified. We conclude, however, that predicted levels of substructure are consistent with a detection of a coherent tidal stream from a dwarf galaxy.Comment: 15 pages, 13 figures, accepted for publication in ApJ. Matches accepted versio

    Unquenching weak substructure

    Full text link
    On assuming that Weak substructure has a dynamics which is similar to quantum chromodynamics but much stronger, we conclude that unquenching is indispensable for predictions on the spectrum of Weak-substructure resonances.Comment: Presented at Workshop on Unquenched Hadron Spectroscopy: Non-Perturbative Models and Methods of QCD vs. Experiment, Coimbra (Portugal), 1-5 September 2014. 8 pages, 1 figure, plain LaTe

    Evolution variable dependence of jet substructure

    Get PDF
    Studies on jet substructure have evolved significantly in recent years. Jet substructure is essentially determined by QCD radiations and non-perturbative effects. Predictions of jet substructure are usually different among Monte Carlo event generators, and are governed by the parton shower algorithm implemented. For leading logarithmic parton shower, even though one of the core variables is the evolution variable, its choice is not unique. We examine evolution variable dependence of the jet substructure by developing a parton shower generator that interpolates between different evolution variables using a parameter α\alpha. Jet shape variables and associated jet rates for quark and gluon jets are used to demonstrate the α\alpha-dependence of the jet substructure. We find angular ordered shower predicts wider jets, while relative transverse momentum (pp_{\bot}) ordered shower predicts narrower jets. This is qualitatively in agreement with the missing phase space of pp_{\bot} ordered showers. Such difference can be reduced by tuning other parameters of the showering algorithm, especially in the low energy region, while the difference tends to increase for high energy jets.Comment: 16 pages, 7 figure

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    An Examination of the Optical Substructure of Galaxy Clusters Hosting Radio Sources

    Full text link
    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey, and optical counterparts in the Sloan Digital Sky Survey (SDSS), we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.Comment: 26 total pages, 15 figures, 8 tables. Published in Ap

    The Substructure Hierarchy in Dark Matter Haloes

    Full text link
    We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen et al. (2004) and Giocoli et al. (2008a), which identifies a subhalo as a group of self-bound particles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter satellite). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting sub-haloes, sub-subhaloes, etc.). On average, haloes which formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al. (2004), we too find that the subhalo mass function per unit mass at redshift z = 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anti-correlated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass.Comment: 18 pages, 24 figures, accepted for publication on MNRA
    corecore