58,755 research outputs found

    Subduction Zone by Emily McGiffin

    Get PDF
    Kelly Shepherd\u27s review of Subduction Zone by Emily McGiffin

    Siberian flood basalt magmatism and Mongolia-Okhotsk slab dehydration

    Get PDF
    Experimental data combined with numerical calculations suggest that fast subducting slabs are cold enough to carry into the deep mantle a significant portion of the water in antigorite, which transforms with increasing depth to phase A and then to phase E and/or wadsleyite by solid-solid phase transition. Clathrate hydrates and ice VII are also stable at PT conditions of cold slabs and represent other potential phases for water transport into the deep mantle. Some cold slabs are expected to deflect while crossing the 410 km and stagnate in transition zone being unable to penetrate through 660 km discontinuity. In this way slabs can move a long way beneath continents after long-lived subduction. With time, the stagnant slabs are heated to the temperature of the ambient transition zone and release free H~2~O-bearing fluid. Combining with transition zone water filter model this may cause voluminous melting of overlying upper mantle rocks. If such process operates in nature, magmas geochemically similar to island-arc magmas are expected to appear in places relatively remote from active arcs at the time of their emplacement. Dolerites of the south-eastern margin of the Siberian flood basalt province, located about 700 km from suggested trench, were probably associated with fast subduction of the Mongolia-Okhotsk slab and originated by dehydration of the stagnant slab in the transition zone. We show that influence of the subduction-related deep water cycle on Siberian flood basalt magmatism gradually reduced with increasing distance from the subduction zone

    Subduction Duration and Slab Dip

    Get PDF
    The dip angles of slabs are among the clearest characteristics of subduction zones, but the factors that control them remain obscure. Here, slab dip angles and subduction parameters, including subduction duration, the nature of the overriding plate, slab age, and convergence rate, are determined for 153 transects along subduction zones for the present day. We present a comprehensive tabulation of subduction duration based on isotopic ages of arc initiation and stratigraphic, structural, plate tectonic and seismic indicators of subduction initiation. We present two ages for subduction zones, a long‐term age and a reinitiation age. Using cross correlation and multivariate regression, we find that (1) subduction duration is the primary parameter controlling slab dips with slabs tending to have shallower dips at subduction zones that have been in existence longer; (2) the long‐term age of subduction duration better explains variation of shallow dip than reinitiation age; (3) overriding plate nature could influence shallow dip angle, where slabs below continents tend to have shallower dips; (4) slab age contributes to slab dip, with younger slabs having steeper shallow dips; and (5) the relations between slab dip and subduction parameters are depth dependent, where the ability of subduction duration and overriding plate nature to explain observed variation decreases with depth. The analysis emphasizes the importance of subduction history and the long‐term regional state of a subduction zone in determining slab dip and is consistent with mechanical models of subduction

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s<SU-1</SU decrease seaward to around 4.5 km s<SU-1</SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Rupture Process of Subduction-Zone Earthquakes

    Get PDF
    This review is primarily concerned with the rupture process of large subduction-zone earthquakes determined by various seismological methods, and with its interpretation in terms of an asperity model. It is not possible to make a thorough and extensive review on the subject because of the limited length. Consequently, this review is inevitably biased toward the works in which I was directly involved through collaborations with various investigators. The distribution of large earthquakes along subduction zones has a distinct pattern. Great earthquakes occur in South America, Alaska, the Aleutians, and Kamchatka. In contrast, earthquakes along the Marianas are smaller. The seismicity in other subduction zones is intermediate between these two groups (see Figure 1). Although this regional variation now generally accepted, it was not until an appropriate method for quantification of large earthquakes was developed that the regional variation was clearly recognized. In view of its fundamental importance in seismology, we first review the quantification method

    On the fluid-mobility of molybdenum, tungsten, and antimony in subduction systems

    Get PDF
    Molybdenum (Mo) and tungsten (W) have long been regarded as being more or less immobile during slab fluid-induced arc magma generation. Here we characterize about 180 samples of young, predominantly mafic to intermediate tephras and lavas for their Mo, W, and antimony (Sb) concentrations, to examine the fluid-mobility of these elements in subduction systems. Samples were taken along the active arcs of the Chilean Southern Volcanic Zone (SVZ) and the Central American Volcanic Arc (CAVA). When relating Mo, W, and Sb to trace element ratios typically used to constrain the involvement of subduction fluids in magma formation, such as Ba/La or U/Th, Mo, W, and Sb are enriched in the most fluid-influenced, highest-degree melts. W/Mo ratios correlate positively with Pb/Ce, which is established to reflect a recent subduction signal or assimilation of crustal material with an ancient subduction signature, suggesting that subduction processes promote enrichment of W over Mo. This is well expressed at the SVZ and most of the CAVA; while few OIB-type rocks from Central Costa Rica form an opposite trend. Moreover, Mo/W ratios co-vary with Cl contents derived from melt inclusions, indicating that the relative degree of mobilization responds to the composition of the subduction fluid. To evaluate the mobility of Mo, W, and Sb during metamorphism in the slab, eclogites with no or minor metasomatic overprint and a fluid-induced overprint in an eclogite-blueschist sequence were investigated. None of the three elements shows a systematic variability related to metasomatism and the minor variations are interpreted to reflect protolith heterogeneity. This suggests that Mo, W and Sb remain relatively immobile up to depths of 70 km in the subduction zone

    Evolving force balance during incipient subduction

    Get PDF
    Nearly half of all active subduction zones initiated during the Cenozoic. All subduction zones associated with active back arc extension have initiated since the Eocene, hinting that back arc extension may be intimately associated with an interval (several tens of Myr) following subduction initiation. That such a large proportion of subduction zones are young indicates that subduction initiation is a continuous process in which the net resisting force associated with forming a new subduction zone can be overcome during the normal evolution of plates. Subduction initiation is known to have occurred in a variety of tectonic settings: old fracture zones, transform faults, and extinct spreading centers and through polarity reversal behind active subduction zones. Although occurring within different tectonic settings, four known subduction initiation events (Izu-Bonin-Mariana (IBM) along a fracture zone, Tonga-Kermadec along an extinct subduction boundary, New Hebrides within a back arc, and Puysegur-Fiordland along a spreading center) were typified by rapid uplift within the forearc followed by sudden subsidence. Other constraints corroborate the compressive nature of IBM and Tonga-Kermadec during initiation. Using an explicit finite element method within a two-dimensional domain, we explore the evolving force balance during initiation in which elastic flexure, viscous flow, plastic failure, and heat transport are all considered. In order to tie theory with observation, known tectonic settings of subduction initiation are used as initial and boundary conditions. We systematically explore incipient compression of a homogeneous plate, a former spreading center, and a fracture zone. The force balance is typified by a rapid growth in resisting force as the plate begins bending, reaching a maximum value dependent on plate thickness, but typically ranging from 2 to 3 × 1012 N/m for cases that become self-sustaining. This is followed by a drop in stress once a shear zone extends through the plate. The formation of a throughgoing fault is associated with rapid uplift on the hanging wall and subsidence on the footwall. Cumulative convergence, not the rate of convergence, is the dominant control on the force balance. Viscous tractions influence the force balance only if the viscosity of the asthenosphere is >1020 Pa s, and then only after plate failure. Following plate failure, buoyancy of the oceanic crust leads to a linear increase with crustal thickness in the work required to initiate subduction. The total work done is also influenced by the rate of lithospheric failure. A self-sustaining subduction zone does not form from a homogeneous plate. A ridge placed under compression localizes subduction initiation, but the resisting ridge push force is not nearly as large as the force required to bend the subducting plate. The large initial bending resistance can be entirely eliminated in ridge models, explaining the propensity for new subduction zones to form through polarity reversals. A fracture zone (FZ) placed in compression leads to subduction initiation with rapid extension of the overriding plate. A FZ must be underthrust by the older plate for ~100–150 km before a transition from forced to self-sustaining states is reached. In FZ models the change in force during transition is reflected by a shift from forearc uplift to subsidence. Subduction initiation is followed by trench retreat and back arc extension. Moderate resisting forces associated with modeled subduction initiation are consistent with the observed youth of Pacific subduction zones. The models provide an explanation for the compressive state of western Pacific margins before and during subduction initiation, including IBM and Tonga-Kermadec in the Eocene, and the association of active back arcs with young subduction zones. On the basis of our dynamic models and the relative poles of rotation between Pacific and Australia during the Eocene, we predict that the northern segment of the Tonga-Kermadec convergent margin would have initiated earlier with a progressive southern migration of the transition between forced and self-sustaining states

    Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, Eastern Iran

    Get PDF
    West directed subduction zones show common characteristics, such as low structural elevation, deep trench, steep slab and a conjugate back-arc basin that are opposite to those of the east directed subduction zones. The tectonomagmatic and metallogenic setting of the Lut Block is still a matter of debate and several hypotheses have been put forward. Despite some authors denying the influence of the operation of Benioff planes, the majority propose that it occurred beneath the Afghan Block, while others consider that oceanic lithosphere was dragged under the Lut Block. Cu-Au porphyry deposits seem to occur in an island arc geotectonic setting during the middle Eocene while Mo-bearing deposits are coincident with the crustal thickening during Oligocene. We introduce new trace element and isotope geochemical data for granitoids and structural evidences testifying the two-sided asymmetric subduction beneath both Afghan and Lut Blocks, with different rates of consumption of oceanic lithosphere

    Neogene plate tectonic reconstructions and geodynamics of North Island sedimentary basins: Implications for the petroleum systems

    Get PDF
    Although the modern Australia-Pacific plate boundary through New Zealand is relatively straight, there have been significant changes in its geometry during the Neogene. Within the North Island sector there has been a fundamental transition from an Alpine Fault translation/transpression regime to a Hikurangi margin subduction regime. This transition has been accompanied by the southward encroachment of the edge of the Pacific plate oceanic slab into Australia lithosphere, shortened and thickened along its eastern margin as a consequence of the prior Alpine Fault transpression, the process now operating in South Island. The response of the Australia lithosphere at the surface to the emplacement of the subducted slab at depth, has differed in the East Coast forearc region versus the foreland in western North Island, where the depth to the slab is greater and there has been a characteristic southward migration of depocentres pinned to the leading edge of the slab. The recent publication of new rotation parameters for relative motion of the Australia, Antarctic and Pacific plates, have provided key new data from which to plot the successive emplacement history of the Pacific slab beneath North Island, thus enabling the comparisons to be made with basin stratigraphy and geohistory. These data also constrain the age of subduction initiation at various points along the present trend of the Hikurangi Trough, identifying a younging of subduction initiation to the southwest. An implication of this younging direction is that the modern accretion¬ary prism south of Cape Kidnappers can be no older than late Miocene (c. 11 Ma). The focus of this paper is on new ideas about the tectonic development of North Island and its basins, which have implications for hydrocarbon exploration
    corecore