756,905 research outputs found
Recommended from our members
Measuring Electric Charge and Molecular Coverage on Electrode Surface from Transient Induced Molecular Electronic Signal (TIMES).
Charge density and molecular coverage on the surface of electrode play major roles in the science and technology of surface chemistry and biochemical sensing. However, there has been no easy and direct method to characterize these quantities. By extending the method of Transient Induced Molecular Electronic Signal (TIMES) which we have used to measure molecular interactions, we are able to quantify the amount of charge in the double layers at the solution/electrode interface for different buffer strengths, buffer types, and pH values. Most uniquely, such capabilities can be applied to study surface coverage of immobilized molecules. As an example, we have measured the surface coverage for thiol-modified single-strand deoxyribonucleic acid (ssDNA) as anchored probe and 6-Mercapto-1-hexanol (MCH) as blocking agent on the platinum surface. Through these experiments, we demonstrate that TIMES offers a simple and accurate method to quantify surface charge and coverage of molecules on a metal surface, as an enabling tool for studies of surface properties and surface functionalization for biochemical sensing and reactions
Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption
We determined the binding energy of hydrogen to the closest packed surface for all nine group VIII transition metals as a function of surface coverage using quantum mechanics (density functional theory with the generalized gradient approximation) with periodic boundary conditions. The study provides a systematic comparison of the most stable surfaces of the nine group VIII transition metals, leading to results consistent with available surface science studies. We then use these to develop a simple thermodynamic model useful in estimating the surface coverage under typical heterogeneous catalysis conditions and compare these results to temperature programmed desorption experiments
In situ surface coverage analysis of RuO<sub>2</sub>-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis
In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes
Atomic oxygen adsorption and incipient oxidation of the Pb(111) surface: A density-functional theory study
We study the atomic oxygen adsorption on Pb(111) surface by using
density-functional theory within the generalized gradient approximation and a
supercell approach. The atomic and energetic properties of purely on-surface
and subsurface oxygen structures at the Pb(111) surface are systematically
investigated for a wide range of coverages and adsorption sites. The fcc and
tetra-II sites (see the text for definition) are found to be energetically
preferred for the on-surface and subsurface adsorption, respectively, in the
whole range of coverage considered. The on-surface and subsurface oxygen
binding energies monotonically increase with the coverage, and the latter is
always higher than the former, thus indicating the tendency to the formation of
oxygen islands (clusters) and the higher stability of subsurface adsorption.
The on-surface and subsurface diffusion-path energetics of atomic oxygen, and
the activation barriers for the O penetration from the on-surface to the
subsurface sites are presented at low and high coverages. In particular, it is
shown that the penetration barrier from the on-surface hcp to the subsurface
tetra-I site is as small as 65 meV at low coverage (=0.25). The other
properties of the O/Pb(111) system, including the charge distribution, the
lattice relaxation, the work function, and the electronic density of states,
are also studied and discussed in detail, which consistently show the gradually
stabilizing ionic O-Pb bond with increase of the oxygen coverage.Comment: 31 pages, 16 figure
Recommended from our members
The study of chiral adsorption systems using synchrotron- based structural and spectroscopic techniques: stereospecific adsorption of serine on Au-modified chiral Cu{531} surfaces
We apply modern synchrotron-based structural
techniques to the study of serine adsorbed on the pure andAumodified
intrinsically chiral Cu{531} surface. XPS and
NEXAFS data in combination with DFT show that on the
pure surface both enantiomers adsorb in l4 geometries (with
de-protonated b-OH groups) at low coverage and in l3
geometries at saturation coverage. Significantly larger
enantiomeric differences are seen for the l4 geometries,
which involve substrate bonds of three side groups of the
chiral center, i.e. a three-point interaction. The l3 adsorption
geometry, where only the carboxylate and amino groups form
substrate bonds, leads to smaller but still significant enantiomeric
differences, both in geometry and the decomposition
behavior. When Cu{531} is modified by the deposition of 1
and 2ML Au the orientations of serine at saturation coverage
are significantly different from those on the clean surface. In
all cases, however, a l3 bond coordination is found at saturation
involving different numbers of Au atoms, which leads
to relatively small enantiomeric differences
Measuring differential rotation of the K-giant \,And
We investigate the temporal spot evolution of the K-giant component in the RS
CVn-type binary system \,Andromedae to establish its surface
differential rotation. Doppler imaging is used to study three slightly
overlapping spectroscopic datasets, obtained independently at three different
observing sites. Each dataset covers one full stellar rotation with good phase
coverage, and in total, results in a continuous coverage of almost three
stellar rotations (17.8\,d). Therefore, these data are well
suited for reconstructing surface temperature maps and studying temporal
evolution in spot configurations. Surface differential rotation is measured by
the means of cross-correlation of all the possible image pairs. The individual
Doppler reconstructions well agree in the revealed spot pattern, recovering
numerous low latitude spots with temperature contrasts of up to
1000\,K with respect to the unspotted photosphere, and also an
asymmetric polar cap which is diminishing with time. Our detailed
cross-correlation study consistently indicate solar-type differential rotation
with an average surface shear , in agreement with former
results.Comment: accepted for publication in A&A, 4 pages, 3 figure
Aging mechanism in tunable Pickering emulsion
We study the stability of a model Pickering emulsion system. A special
counter-flow microfluidics set-up was used to prepare monodisperse Pickering
emulsions, with oil droplets in water. The wettability of the monodisperse
silica nanoparticles (NPs) could be tuned by surface grafting and the surface
coverage of the droplets was controlled using the microfluidics setup. A
surface coverage as low as 23 is enough to stabilize the emulsions and we
evidence a new regime of Pickering emulsion stability where the surface
coverage of emulsion droplets of constant size increases in time, in
coexistence with a large amount of dispersed phase. Our results demonstrate
that the previously observed limited coalescence regime where surface coverage
tends to control the average size of the final droplets must be put in a
broader perspective
Thermal desorption study of physical forces at the PTFE surface
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
- …
