756,905 research outputs found

    Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption

    Get PDF
    We determined the binding energy of hydrogen to the closest packed surface for all nine group VIII transition metals as a function of surface coverage using quantum mechanics (density functional theory with the generalized gradient approximation) with periodic boundary conditions. The study provides a systematic comparison of the most stable surfaces of the nine group VIII transition metals, leading to results consistent with available surface science studies. We then use these to develop a simple thermodynamic model useful in estimating the surface coverage under typical heterogeneous catalysis conditions and compare these results to temperature programmed desorption experiments

    In situ surface coverage analysis of RuO<sub>2</sub>-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

    Get PDF
    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes

    Atomic oxygen adsorption and incipient oxidation of the Pb(111) surface: A density-functional theory study

    Full text link
    We study the atomic oxygen adsorption on Pb(111) surface by using density-functional theory within the generalized gradient approximation and a supercell approach. The atomic and energetic properties of purely on-surface and subsurface oxygen structures at the Pb(111) surface are systematically investigated for a wide range of coverages and adsorption sites. The fcc and tetra-II sites (see the text for definition) are found to be energetically preferred for the on-surface and subsurface adsorption, respectively, in the whole range of coverage considered. The on-surface and subsurface oxygen binding energies monotonically increase with the coverage, and the latter is always higher than the former, thus indicating the tendency to the formation of oxygen islands (clusters) and the higher stability of subsurface adsorption. The on-surface and subsurface diffusion-path energetics of atomic oxygen, and the activation barriers for the O penetration from the on-surface to the subsurface sites are presented at low and high coverages. In particular, it is shown that the penetration barrier from the on-surface hcp to the subsurface tetra-I site is as small as 65 meV at low coverage (Θ\Theta =0.25). The other properties of the O/Pb(111) system, including the charge distribution, the lattice relaxation, the work function, and the electronic density of states, are also studied and discussed in detail, which consistently show the gradually stabilizing ionic O-Pb bond with increase of the oxygen coverage.Comment: 31 pages, 16 figure

    Measuring differential rotation of the K-giant ζ\zeta\,And

    Full text link
    We investigate the temporal spot evolution of the K-giant component in the RS CVn-type binary system ζ\zeta\,Andromedae to establish its surface differential rotation. Doppler imaging is used to study three slightly overlapping spectroscopic datasets, obtained independently at three different observing sites. Each dataset covers one full stellar rotation with good phase coverage, and in total, results in a continuous coverage of almost three stellar rotations (Prot=P_{\rm rot}=17.8\,d). Therefore, these data are well suited for reconstructing surface temperature maps and studying temporal evolution in spot configurations. Surface differential rotation is measured by the means of cross-correlation of all the possible image pairs. The individual Doppler reconstructions well agree in the revealed spot pattern, recovering numerous low latitude spots with temperature contrasts of up to \approx1000\,K with respect to the unspotted photosphere, and also an asymmetric polar cap which is diminishing with time. Our detailed cross-correlation study consistently indicate solar-type differential rotation with an average surface shear α0.055\alpha\approx0.055, in agreement with former results.Comment: accepted for publication in A&A, 4 pages, 3 figure

    Aging mechanism in tunable Pickering emulsion

    Full text link
    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23%\% is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective

    Thermal desorption study of physical forces at the PTFE surface

    Get PDF
    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
    corecore