2,408,856 research outputs found

    Critical assessment of methods of protein structure prediction: Progress and new directions in round XI

    Get PDF
    Modeling of protein structure from amino acid sequence now plays a major role in structural biology. Here we report new developments and progress from the CASP11 community experiment, assessing the state of the art in structure modeling. Notable points include the following: (1) New methods for predicting three dimensional contacts resulted in a few spectacular template free models in this CASP, whereas models based on sequence homology to proteins with experimental structure continue to be the most accurate. (2) Refinement of initial protein models, primarily using molecular dynamics related approaches, has now advanced to the point where the best methods can consistently (though slightly) improve nearly all models. (3) The use of relatively sparse NMR constraints dramatically improves the accuracy of models, and another type of sparse data, chemical crosslinking, introduced in this CASP, also shows promise for producing better models. (4) A new emphasis on modeling protein complexes, in collaboration with CAPRI, has produced interesting results, but also shows the need for more focus on this area. (5) Methods for estimating the accuracy of models have advanced to the point where they are of considerable practical use. (6) A first assessment demonstrates that models can sometimes successfully address biological questions that motivate experimental structure determination. (7) There is continuing progress in accuracy of modeling regions of structure not directly available by comparative modeling, while there is marginal or no progress in some other areas

    Bivariate Beta-LSTM

    Full text link
    Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.Comment: AAAI 202

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2

    Full text link
    The local structure of the AgPbmSbTem+2 series of thermoelectric materials has been studied using the atomic pair distribution function (PDF) method. Three candidate-models were attempted for the structure of this class of materials using either a one-phase or a two-phase modeling procedure. Combining modeling the PDF with HRTEM data we show that AgPbmSbTem+2 contains nanoscale inclusions with composition close to AgPb3SbTe5 randomly embedded in a PbTe matrix.Comment: 7 pages, 5 figures, 2 tables, submitted to PR

    RosettaBackrub--a web server for flexible backbone protein structure modeling and design.

    Get PDF
    The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein-protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design
    corecore