2,661,379 research outputs found

    Structural glass: new opportunities for an old material

    Get PDF

    Advanced fiber-composite hybrids--A new structural material

    Get PDF
    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure

    Isostatic compression process converts polyaromatics into structural material

    Get PDF
    Isostatic compression process compacts certain powdered aromatic polymers into homogeneous materials that can be machined to form useful components, such as bearings. It provides for complete removal of air in the interstitial spaces surrounding the granules of the powdered polymer before the powder is subjected to isostatic compression

    Laminated glass as a structural building material

    Get PDF

    Combustion: Structural interaction in a viscoelastic material

    Get PDF
    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code

    PEN as self-vetoing structural Material

    Full text link
    Polyethylene Naphtalate (PEN) is a mechanically very favorable polymer. Earlier it was found that thin foils made from PEN can have very high radio-purity compared to other commercially available foils. In fact, PEN is already in use for low background signal transmission applications (cables). Recently it has been realized that PEN also has favorable scintillating properties. In combination, this makes PEN a very promising candidate as a self-vetoing structural material in low background experiments. Components instrumented with light detectors could be built from PEN. This includes detector holders, detector containments, signal transmission links, etc. The current R\&D towards qualification of PEN as a self-vetoing low background structural material is be presented.Comment: 4 pages, 7 figures, contribution to Proceedings of the sixth workshop on Low Radioactivity Techniques 2017, 23-27 May 2017 Seoul, to be published at AIP, editor: D. Leonar

    Structural Material Property Tailoring Using Deep Neural Networks

    Full text link
    Advances in robotics, artificial intelligence, and machine learning are ushering in a new age of automation, as machines match or outperform human performance. Machine intelligence can enable businesses to improve performance by reducing errors, improving sensitivity, quality and speed, and in some cases achieving outcomes that go beyond current resource capabilities. Relevant applications include new product architecture design, rapid material characterization, and life-cycle management tied with a digital strategy that will enable efficient development of products from cradle to grave. In addition, there are also challenges to overcome that must be addressed through a major, sustained research effort that is based solidly on both inferential and computational principles applied to design tailoring of functionally optimized structures. Current applications of structural materials in the aerospace industry demand the highest quality control of material microstructure, especially for advanced rotational turbomachinery in aircraft engines in order to have the best tailored material property. In this paper, deep convolutional neural networks were developed to accurately predict processing-structure-property relations from materials microstructures images, surpassing current best practices and modeling efforts. The models automatically learn critical features, without the need for manual specification and/or subjective and expensive image analysis. Further, in combination with generative deep learning models, a framework is proposed to enable rapid material design space exploration and property identification and optimization. The implementation must take account of real-time decision cycles and the trade-offs between speed and accuracy

    Automated fully-stressed design with NASTRAN

    Get PDF
    An automated strength sizing capability is described. The technique determines the distribution of material among the elements of a structural model. The sizing is based on either a fully stressed design or a scaled feasible fully stressed design. Results obtained from the application of the strength sizing to the structural sizing of a composite material wing box using material strength allowables are presented. These results demonstrate the rapid convergence of the structural sizes to a usable design

    Technology update: Tethered aerostat structural design and material developments

    Get PDF
    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles
    corecore