1,111,463 research outputs found

    Gaussian Process Structural Equation Models with Latent Variables

    Full text link
    In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.Comment: 12 pages, 6 figure

    Causal Consistency of Structural Equation Models

    Get PDF
    Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion of consistency in the case of Structural Equation Models (SEMs) by introducing exact transformations between SEMs. This provides a general language to consider, for instance, the different levels of description in the following three scenarios: (a) models with large numbers of variables versus models in which the `irrelevant' or unobservable variables have been marginalised out; (b) micro-level models versus macro-level models in which the macro-variables are aggregate features of the micro-variables; (c) dynamical time series models versus models of their stationary behaviour. Our analysis stresses the importance of well specified interventions in the causal modelling process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted manuscrip

    Testing non-nested structural equation models

    Full text link
    In this paper, we apply Vuong's (1989) likelihood ratio tests of non-nested models to the comparison of non-nested structural equation models. Similar tests have been previously applied in SEM contexts (especially to mixture models), though the non-standard output required to conduct the tests has limited their previous use and study. We review the theory underlying the tests and show how they can be used to construct interval estimates for differences in non-nested information criteria. Through both simulation and application, we then study the tests' performance in non-mixture SEMs and describe their general implementation via free R packages. The tests offer researchers a useful tool for non-nested SEM comparison, with barriers to test implementation now removed.Comment: 24 pages, 6 figure
    corecore