1,477,402 research outputs found
Bose-Einstein Condensation and strong-correlation behavior of phonons in ion traps
We show that the dynamics of phonons in a set of trapped ions interacting
with lasers is described by a Bose-Hubbard model whose parameters can be
externally adjusted. We investigate the possibility of observing several
quantum many-body phenomena, including (quasi) Bose-Einstein condensation as
well as a superfluid-Mott insulator quantum phase transition.Comment: 5 pages, 3 figure
Visualizing Exotic Orbital Texture in the Single-Layer Mott Insulator 1T-TaSe2
Mott insulating behavior is induced by strong electron correlation and can
lead to exotic states of matter such as unconventional superconductivity and
quantum spin liquids. Recent advances in van der Waals material synthesis
enable the exploration of novel Mott systems in the two-dimensional limit. Here
we report characterization of the local electronic properties of single- and
few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving
scanning tunneling microscopy and angle-resolved photoemission. Our combined
experimental and theoretical study indicates that electron correlation induces
a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by
novel orbital texture. Inclusion of interlayer coupling weakens the insulating
phase in 1T-TaSe2, as seen by strong reduction of its energy gap and quenching
of its correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. Our
results establish single-layer 1T-TaSe2 as a useful new platform for
investigating strong correlation physics in two dimensions
Are polar liquids less simple?
Strong correlation between equilibrium fluctuations of the potential energy,
U, and the virial, W, is a characteristic of a liquid that implies the presence
of certain dynamic properties, such as density scaling of the relaxation times
and isochronal superpositioning of the relaxation function. In this work we
employ molecular dynamics simulations (mds) on methanol and two variations,
lacking hydrogen bonds and a dipole moment, to assess the connection between
the correlation of U and W and these dynamic properties. We show, in accord
with prior results of others [T.S. Ingebrigtsen, T.B. Schroder, J.C. Dyre,
Phys. Rev. X 2, 011011 (2012).], that simple van der Waals liquids exhibit both
strong correlations and the expected dynamic behavior. However, for polar
liquids this correspondence breaks down - weaker correlation between U and W is
not associated with worse conformance to density scaling or isochronal
superpositioning. The reason for this is that strong correlation between U and
W only requires their proportionality, whereas the expected dynamic behavior
depends primarily on constancy of the proportionality constant for all state
points. For hydrogen-bonded liquids, neither strong correlation nor adherence
to the dynamic properties is observed; however, this nonconformance is not
directly related to the concentration of hydrogen bonds, but rather to the
greater deviation of the intermolecular potential from an inverse power law
(IPL). Only (hypothetical) liquids having interactions governed strictly by an
IPL are perfectly correlating and exhibit the consequent dynamic properties
over all thermodynamic conditions.Comment: 14 pages, 8 figure
Glueballs and Instantons
We study correlation functions and Bethe Salpeter amplitudes for the scalar,
the pseudoscalar and the tensor glueballs using an instanton-based model of the
QCD vacuum. We consider both the pure gauge case and the situation for real QCD
with two light quark flavors. We show that instantons lead to a strong
modification of the correlation functions as compared to their perturbative
behavior. In particular, we find a strong attractive force in the
channel and repulsion in the channel. Due to the
strong classical field of the instantons, these effects are much larger than
the spin splittings observed in mesons made of quarks. The resulting masses,
coupling constants and wave functions appear to be in agreement with lattice
gauge simulations.Comment: revised version published in Phys. Rev. Let
Correlation between cohesive energy and mixing rate in ion mixing of metallic bilayers
We have compared the mixing rate of several 5d-4d metal bilayers which form ideal solutions. We observe a strong correlation between the mixing rate and the average cohesive energy of each bilayer. A model based on the thermal spike concept is proposed to explain this behavior. The model leads to a general expression describing mixing rates in metallic bilayers
Temperature and Disorder Chaos in Low Dimensional Directed Paths
The responses of a dimensional directed path to temperature and
to potential variations are calculated exactly, and are governed by the same
scaling form. The short scale decorrelation (strong correlation regime) leads
to the overlap length predicted by heuristic approaches; its temperature
dependence and large absolute value agree with scaling and numerical
observations. Beyond the overlap length (weak correlation regime), the
correlation decays algebraically. A clear physical mechanism explains the
behavior in each case: the initial decorrelation is due to `fragile droplets,'
which contribute to the entropy fluctuations as , while the residual
correlation results from accidental intersections of otherwise uncorrelated
configurations.Comment: four pages, revtex4; minor modifications in the text and typos
correcte
Lagrangian statistics in forced two-dimensional turbulence
We report on simulations of two-dimensional turbulence in the inverse energy
cascade regime. Focusing on the statistics of Lagrangian tracer particles,
scaling behavior of the probability density functions of velocity fluctuations
is investigated. The results are compared to the three-dimensional case. In
particular an analysis in terms of compensated cumulants reveals the transition
from a strong non-Gaussian behavior with large tails to Gaussianity. The
reported computation of correlation functions for the acceleration components
sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl
Mott transition in Kagom\'e lattice Hubbard model
We investigate the Mott transition in the Kagom\'e lattice Hubbard model
using a cluster extension of dynamical mean field theory. The calculation of
the double occupancy, the density of states, the static and dynamical spin
correlation functions demonstrates that the system undergoes the first-order
Mott transition at the Hubbard interaction (:bandwidth). In
the metallic phase close to the Mott transition, we find the strong
renormalization of three distinct bands, giving rise to the formation of heavy
quasiparticles with strong frustration. It is elucidated that the quasiparticle
states exhibit anomalous behavior in the temperature-dependent spin correlation
functions.Comment: 4 pages, 6 figure
Scaling and self-averaging in the three-dimensional random-field Ising model
We investigate, by means of extensive Monte Carlo simulations, the magnetic
critical behavior of the three-dimensional bimodal random-field Ising model at
the strong disorder regime. We present results in favor of the two-exponent
scaling scenario, , where and are the
critical exponents describing the power-law decay of the connected and
disconnected correlation functions and we illustrate, using various finite-size
measures and properly defined noise to signal ratios, the strong violation of
self-averaging of the model in the ordered phase.Comment: 8 pages, 6 figures, to be published in Eur. Phys. J.
- …
