491,720 research outputs found

    Moist Convection and the Thermal Stratification of the Extratropical Troposphere

    Get PDF
    Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates

    Stratifying derived categories of cochains on certain spaces

    Full text link
    In recent years, Benson, Iyengar and Krause have developed a theory of stratification for compactly generated triangulated categories with an action of a graded commutative Noetherian ring. Stratification implies a classification of localizing and thick subcategories in terms of subsets of the prime ideal spectrum of the given ring. In this paper two stratification results are presented: one for the derived category of a commutative ring-spectrum with polynomial homotopy and another for the derived category of cochains on certain spaces. We also give the stratification of cochains on a space a topological content.Comment: 27 page

    Stratification requirements for seed dormancy alleviation in a wetland weed.

    Get PDF
    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence

    A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology

    Get PDF
    The stratification near the base of the Sun's convective envelope is governed by processes of convective overshooting and element diffusion, and the region is widely believed to play a key role in the solar dynamo. The stratification in that region gives rise to a characteristic signal in the frequencies of solar p modes, which has been used to determine the depth of the solar convection zone and to investigate the extent of convective overshoot. Previous helioseismic investigations have shown that the Sun's spherically symmetric stratification in this region is smoother than that in a standard solar model without overshooting, and have ruled out simple models incorporating overshooting, which extend the region of adiabatic stratification and have a more-or-less abrupt transition to subadiabatic stratification at the edge of the overshoot region. In this paper we consider physically motivated models which have a smooth transition in stratification bridging the region from the lower convection zone to the radiative interior beneath. We find that such a model is in better agreement with the helioseismic data than a standard solar model.Comment: 18 pages, 4 tables, 24 figures - to appear in MNRAS (version a: equation 9 corrected
    • …
    corecore