453 research outputs found

    A stochastic algorithm for probabilistic independent component analysis

    Full text link
    The decomposition of a sample of images on a relevant subspace is a recurrent problem in many different fields from Computer Vision to medical image analysis. We propose in this paper a new learning principle and implementation of the generative decomposition model generally known as noisy ICA (for independent component analysis) based on the SAEM algorithm, which is a versatile stochastic approximation of the standard EM algorithm. We demonstrate the applicability of the method on a large range of decomposition models and illustrate the developments with experimental results on various data sets.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS499 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Stochastic Algorithm for Probabilistic Independent Component Analysis

    No full text
    The decomposition of a sample of images on a relevant subspace is a recurrent problem in many different fields from Computer Vision to medical image analysis. We propose in this paper a new learning principle and implementation of the generative decomposition model generally known as noisy ICA (for independent component analysis) based on the SAEM algorithm, which is a versatile stochastic approximation of the standard EM algorithm. We demonstrate the applicability of the method on a large range of decomposition models and illustrate the developments with experimental results on various data sets

    An empirical Bayes procedure for the selection of Gaussian graphical models

    Full text link
    A new methodology for model determination in decomposable graphical Gaussian models is developed. The Bayesian paradigm is used and, for each given graph, a hyper inverse Wishart prior distribution on the covariance matrix is considered. This prior distribution depends on hyper-parameters. It is well-known that the models's posterior distribution is sensitive to the specification of these hyper-parameters and no completely satisfactory method is registered. In order to avoid this problem, we suggest adopting an empirical Bayes strategy, that is a strategy for which the values of the hyper-parameters are determined using the data. Typically, the hyper-parameters are fixed to their maximum likelihood estimations. In order to calculate these maximum likelihood estimations, we suggest a Markov chain Monte Carlo version of the Stochastic Approximation EM algorithm. Moreover, we introduce a new sampling scheme in the space of graphs that improves the add and delete proposal of Armstrong et al. (2009). We illustrate the efficiency of this new scheme on simulated and real datasets

    Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods

    Get PDF
    Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris-Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS729 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model

    Full text link
    Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonni\`ere, Amit and Trouv\'e in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has been introduced in [2] to face the problem encountered in [1] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some "SAEM-like" algorithm to approximate the MAP estimator in the general Bayesian setting of mixture of deformable template model. We also prove the convergence of this algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images

    Parameter Estimation of Heavy-Tailed AR Model with Missing Data via Stochastic EM

    Full text link
    The autoregressive (AR) model is a widely used model to understand time series data. Traditionally, the innovation noise of the AR is modeled as Gaussian. However, many time series applications, for example, financial time series data, are non-Gaussian, therefore, the AR model with more general heavy-tailed innovations is preferred. Another issue that frequently occurs in time series is missing values, due to system data record failure or unexpected data loss. Although there are numerous works about Gaussian AR time series with missing values, as far as we know, there does not exist any work addressing the issue of missing data for the heavy-tailed AR model. In this paper, we consider this issue for the first time, and propose an efficient framework for parameter estimation from incomplete heavy-tailed time series based on a stochastic approximation expectation maximization (SAEM) coupled with a Markov Chain Monte Carlo (MCMC) procedure. The proposed algorithm is computationally cheap and easy to implement. The convergence of the proposed algorithm to a stationary point of the observed data likelihood is rigorously proved. Extensive simulations and real datasets analyses demonstrate the efficacy of the proposed framework.Comment: This is a companion document to a paper that is accepted to IEEE Transaction on Signal Processing 2019, complemented with the supplementary materia

    Strategies for online inference of model-based clustering in large and growing networks

    Full text link
    In this paper we adapt online estimation strategies to perform model-based clustering on large networks. Our work focuses on two algorithms, the first based on the SAEM algorithm, and the second on variational methods. These two strategies are compared with existing approaches on simulated and real data. We use the method to decipher the connexion structure of the political websphere during the US political campaign in 2008. We show that our online EM-based algorithms offer a good trade-off between precision and speed, when estimating parameters for mixture distributions in the context of random graphs.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS359 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore