233,525 research outputs found

    Stimuli-responsive electrospun fibers and their applications

    Get PDF
    Stimuli-responsive electrospun nanofibers are gaining considerable attention as highly versatile tools which offer great potential in the biomedical field. In this critical review, an overview is given on recent advances made in the development and application of stimuli-responsive fibers. The specific features of these electrospun fibers are highlighted and discussed in view of the properties required for the diverse applications. Furthermore, several novel biomedical applications are discussed and the respective advantages and shortcomings inherent to stimuli-responsive electrospun fibers are addressed (136 references)

    Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform

    Get PDF
    Stimuli-responsive nanoparticles hold great promise for drug delivery to improve the safety and efficacy of cancer therapy. One of the most investigated stimuli-responsive strategies is to induce drug release by heating with laser, ultrasound, or electromagnetic field. More recently, cryosurgery (also called cryotherapy and cryoablation), destruction of diseased tissues by first cooling/freezing and then warming back, has been used to treat various diseases including cancer in the clinic. Here we developed a cold-responsive nanoparticle for controlled drug release as a result of the irreversible disassembly of the nanoparticle when cooled to below ∼10 °C. Furthermore, this nanoparticle can be used to generate localized heating under near infrared (NIR) laser irradiation, which can facilitate the warming process after cooling/freezing during cryosurgery. Indeed, the combination of this cold-responsive nanoparticle with ice cooling and NIR laser irradiation can greatly augment cancer destruction both in vitro and in vivo with no evident systemic toxicity

    Pickering emulsions responsive to CO₂/N₂ and light dual stimuli at ambient temperature

    Get PDF
    A dual stimulus-responsive n-octane-in-water Pickering emulsion with CO₂/N₂ and light triggers is prepared using negatively charged silica nanoparticles in combination with a trace amount of dual switchable surfactant, 4-butyl-4-(4-N,N-dimethylbutoxyamine) azobenzene bicarbonate (AZO-B₄) as stabilizers. On one hand, the emulsion can be transformed between stable and unstable at ambient temperature rapidly via the N₂/CO₂ trigger, and on the other hand a change in droplet size of the emulsion can occur upon light irradiation/re-homogenization cycles without changing the particle/surfactant concentration. The dual responsiveness thus allows for a precise control of emulsion properties. Compared with emulsions stabilised by specially synthesized stimuli-responsive particles or by stimuli-responsive surfactants, the method reported here is much easier and requires relatively low concentration of surfactant (≈1/10 cmc), which is important for potential applications

    Visual examination apparatus

    Get PDF
    An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made

    Functionalization of cotton with poly-NiPAAm/chitosan microgel: Part II. Stimuli-responsive liquid management properties

    Get PDF
    An innovative strategy for functional finishing of cotton involves application of stimuli-responsive surface modifying system based on temperature- and pH-responsive poly-NiPAAm/chitosan microgel. The stimuli-responsiveness implied to cotton is the consequence of swelling/collapse of the microgel particles incorporated to the fibre surface, which produces an active liquid management system. The performance of functionalized cotton fabric in terms of liquid management properties was assessed by choosing appropriate techniques (water uptake; thin-layer wicking; water retention capacity; and drying capability) and discussion of the results was based on the types of water that are expected to be present in hydrated cotton and stimuli-responsive microgel

    Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing.

    Get PDF
    A versatile photonic crystal sensing motif based on a twodimensional (2D) inverse opal monolayer of stimuli-responsive polyelectrolyte gel with tunable optical properties is reported. The photonic membrane shows prompt response to pH and can be readily read out from either its optical spectra or interference colours

    Stimuli-responsive surfactants

    Get PDF
    Recent progress in stimuli-responsive surfactants is reviewed, covering control of both interfaces and bulk solution properties. Particular attention is devoted to potential future directions and applications.Recent progress in stimuli-responsive surfactants is reviewed, covering control of both interfaces and bulk solution properties. Particular attention is devoted to potential future directions and applications.Recent progress in stimuli-responsive surfactants is reviewed, covering control of both interfaces and bulk solution properties. Particular attention is devoted to potential future directions and applications.Recent progress in stimuli-responsive surfactants is reviewed, covering control of both interfaces and bulk solution properties. Particular attention is devoted to potential future directions and applications

    Carbazole-based Diradicals for Dynamic Covalent Chemistry

    Get PDF
    Dynamic covalent chemistry (DCC) is focused on the creation of structural scaffolds based on chemical components that interact through strong but reversible bonds. In fact, dynamic covalent bonds receive lot of attention because of their unique feature to become reversible under mild conditions.1 conjugated diradical compounds has emerged as essential building blocks in DCC.2 In this work, we will review our most recent works on the formation of stimuli-responsive cyclophanes by self-assembly of carbazole-based diradicals. To this end, we use a combined experimental and theoretical approach that links vibrational spectroscopy with DFT calculations. In this sense, it is interesting to note that we have recently demonstrated the potential of a para-substituted carbazole with terminal dicyanomethylene (DCM) groups to act as building blocks in DCC.3 This quinoid carbazole monomer transforms to a macrocycle cyclophane upon soft external stimuli (temperature, pressure, light), showing strong chromic features. In addition, we have also recently explored how the different DCM substitution position affects the interesting chromoactive properties of carbazole compounds.4 Finally, we are currently exploring the effect of the elongation of the carbazole backbone on the formation of stimuli-responsive cyclophanes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library

    Get PDF
    BACKGROUND: The identification of endogenous cis-regulatory DNA elements (CREs) responsive to endogenous and environmental cues is important for studying gene regulation and for biotechnological applications but is labor and time intensive. Alternatively, by taking a synthetic biology approach small specific DNA binding sites tailored to the needs of the scientist can be generated and rapidly identified. RESULTS: Here we report a novel approach to identify stimulus-responsive synthetic CREs (SynCREs) from an unbiased random synthetic element (SynE) library. Functional SynCREs were isolated by screening the SynE libray for elements mediating transcriptional activity in plant protoplasts. Responsive elements were chromatin immunoprecipitated by targeting the active Ser-5 phosphorylated RNA polymerase II CTD (Pol II ChIP). Using sequential enrichment, deep sequencing and a bioinformatics pipeline, candidate responsive SynCREs were identified within a pool of constitutively active DNA elements and further validated. These included bonafide biotic/abiotic stress-responsive motifs along with novel SynCREs. We tested several SynCREs in Arabidopsis and confirmed their response to biotic stimuli. CONCLUSIONS: Successful isolation of synthetic stress-responsive elements from our screen illustrates the power of the described methodology. This approach can be applied to any transfectable eukaryotic system since it exploits a universal feature of the eukaryotic Pol II
    corecore