181,110 research outputs found

    On the Pyhlogeny of Human Morality

    Get PDF

    Drug Distribution and Stent Retention of Drug Eluting Stents

    Get PDF
    In this paper the examinations of drug eluting coronary stents are shown, such as the morphology of the coatings before expansion, drug distribution, the methodology and the value of stent retention. Surface qualities of drug coatings were examined with stereo-microscope, metallographic microscope and scanning electron microscope. Examinations with confocal microscope show drug distribution in the coatings. Stent retention is a very important property of the stent system. Stent retention is a force, needed to the stent slip down from the balloon. Three drug eluting coronary stents were tested with our method

    Stent implant follow-up in intravascular optical coherence tomography images

    Get PDF
    The objectives of this article are (i) to utilize computer methods in detection of stent struts imaged in vivo by optical coherence tomography (OCT) during percutaneous coronary interventions (PCI); (ii) to provide measurements for the assessment and monitoring of in-stent restenosis by OCT post PCI. Thirty-nine OCT cross-sections from seven pullbacks from seven patients presenting varying degrees of neointimal hyperplasia (NIH) are selected, and stent struts are detected. Stent and lumen boundaries are reconstructed and one experienced observer analyzed the strut detection, the lumen and stent area measurements, as well as the NIH thickness in comparison to manual tracing using the reviewing software provided by the OCT manufacturer (LightLab Imaging, MA, USA). Very good agreements were found between the computer methods and the expert evaluations for lumen cross-section area (mean difference = 0.11 ± 0.70 mm2; r2 = 0.98, P\ 0.0001) and the stent cross-section area (mean difference = 0.10 ± 1.28 mm2; r2 = 0.85, P value\ 0.0001). The average number of detected struts was 10.4 ± 2.9 per crosssection when the expert identified 10.5 ± 2.8 (r2 = 0.78, P value\0.0001). For the given patient dataset: lumen cross-sectional area was on the average (6.05 ± 1.87 mm2), stent cross-sectional area was (6.26 ± 1.63 mm2), maximum angle between struts was on the average (85.96 ± 54.23), maximum, average, and minimum distance between the stent and the lumen were (0.18 ± 0.13 mm), (0.08 ± 0.06 mm), and (0.01 ± 0.02 mm), respectively, and stent eccentricity was (0.80 ± 0.08). Low variability between the expert and automatic method was observed in the computations of the most important parameters assessing the degree of neointimal tissue growth in stents imaged by OCT pullbacks. After further extensive validation, the presented methods might offer a robust automated tool that will improve the evaluation and follow-up monitoring of in-stent restenosis in patients

    A New 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks

    Get PDF
    Abstract. Detection of stent struts imaged in vivo by optical coherence tomography (OCT) after percutaneous coronary interventions (PCI) and quantification of in-stent neointimal hyperplasia (NIH) are important. In this paper, we present a new computational method to facilitate the physician in this endeavor to assess and compare new (drug-eluting) stents. We developed a new algorithm for stent strut detection and utilized splines to reconstruct the lumen and stent boundaries which provide automatic measurements of NIH thickness, lumen and stent area. Our original approach is based on the detection of stent struts unique characteristics: bright reflection and shadow behind. Furthermore, we present for the first time to our knowledge a rotation correction method applied across OCT cross-section images for 3D reconstruction and visualization of reconstructed lumen and stent boundaries for further analysis in the longitudinal dimension of the coronary artery. Our experiments over OCT cross-sections taken from 7 patients presenting varying degrees of NIH after PCI illustrate a good agreement between the computer method and expert evaluations: Bland-Altmann analysis revealed a mean difference for lumen cross-section area of 0.11 ± 0.70mm2 and for the stent cross-section area of 0.10 ± 1.28mm2

    Effect of stent position on flow characteristics in a cerebral aneurysm

    Get PDF
    The position of an intracranial stent in relation to the ostium of a cerebral aneurysm can significantly affect the blood flow characteristics through the ostium and inside the aneurysm. An idealised cerebral artery and aneurysm were simulated with a pulsatile flow. Simulation results show that the effect on mass inflow between two stent positions is about 20% whereas the difference in the porosity effect of the pattern at these two positions is around 3%. The remainder may be attributed to differences in flow velocity profile across the stent into the aneurysm. The implications for clinical practice are an important consideration as the surgeon may place the stent in any position between the two investigated and hence this will lead to markedly different stent performance. Therefore, computational tools that take into account the variability of stent placement will be valuable for assisting surgical planning

    Trackability Measurement of Coronary Stent in a Coronary Vessel Modell

    Get PDF
    The EN 14299 standard describes in vitro tests of stent and stent system which are specified more precisely and cover a number of additional parameters. In this paper examination of bare metal coronary stents are shown, such as the trackability force measurement. The measurement of the system’s trackability was performed using an in vitro coronary vessel model with the method worked out by us. The trackability is a very important property of the stent system

    Which spring is the best? Comparison of methods for virtual stenting.

    Get PDF
    This paper presents a methodology for modeling the deployment of implantable devices used in minimally invasive vascular interventions. Motivated by the clinical need to perform preinterventional rehearsals of a stent deployment, we have developed methods enabling virtual device placement inside arteries, under the constraint of real-time application. This requirement of rapid execution narrowed down the search for a suitable method to the concept of a dynamic mesh. Inspired by the idea of a mesh of springs, we have found a novel way to apply it to stent modeling. The experiments conducted in this paper investigate properties of the stent models based on three different spring types: lineal, semitorsional, and torsional springs. Furthermore, this paper compares the results of various deployment scenarios for two different classes of devices: a stent graft and a flow diverter. The presented results can be of a high-potential clinical value, enabling the predictive evaluation of the outcome of a stent deployment treatment

    3D printing for bio-synthetic biliary stents

    Get PDF
    Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques
    corecore