258 research outputs found
How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing
The purpose of the present study was to determine the effects of a plantar
pressure-based, tongue-placed tactile biofeedback on postural control
mechanisms during quiet standing. To this aim, sixteen young healthy adults
were asked to stand as immobile as possible with their eyes closed in two
conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP)
displacements, recorded using a force platform, were used to compute the
horizontal displacements of the vertical projection the centre of gravity
(CoGh) and those of the difference between the CoP and the vertical projection
of the CoG (CoP-CoGv). Altogether, the present findings suggest that the main
way the plantar pressure-based, tongue-placed tactile biofeedback improves
postural control during quiet standing is via both a reduction of the
correction thresholds and an increased efficiency of the corrective mechanism
involving the CoGh displacements
How performing a mental arithmetic task modify the regulation of centre of foot pressure displacements during bipedal quiet standing.
We investigated the effect of performing a mental arithmetic task with two levels of difficulty on the regulation of centre of foot pressure (COP) displacements during bipedal quiet standing in young healthy individuals. There was also a control condition in which no concurrent task was required. A space-time-domain analysis showed decreased COP displacements, along the antero-posterior axis, when participants concurrently performed the most difficult mental arithmetic task. Frequency-domain and stabilogram-diffusion analyses further suggested these decreased COP displacements to be associated with an increased stiffness and a reduction of the exploratory behaviours in the short term, respectively
Use of Nintendo Wii Balance Board for posturographic analysis of Multiple Sclerosis patients with minimal balance impairment
Background: The Wii Balance Board (WBB) has been proposed as an inexpensive alternative to laboratory-grade Force Plates (FP) for the instrumented assessment of balance. Previous studies have reported a good validity and reliability of the WBB for estimating the path length of the Center of Pressure. Here we extend this analysis to 18 balance related features extracted from healthy subjects (HS) and individuals affected by Multiple Sclerosis (MS) with minimal balance impairment. Methods: Eighteen MS patients with minimal balance impairment (Berg Balance Scale 53.3 ± 3.1) and 18 age-matched HS were recruited in this study. All subjects underwent instrumented balance tests on the FP and WBB consisting of quiet standing with the eyes open and closed. Linear correlation analysis and Bland-Altman plots were used to assess relations between path lengths estimated using the WBB and the FP. 18 features were extracted from the instrumented balance tests. Statistical analysis was used to assess significant differences between the features estimated using the WBB and the FP and between HS and MS. The Spearman correlation coefficient was used to evaluate the validity and the Intraclass Correlation Coefficient was used to assess the reliability of WBB measures with respect to the FP. Classifiers based on Support Vector Machines trained on the FP and WBB features were used to assess the ability of both devices to discriminate between HS and MS. Results: We found a significant linear relation between the path lengths calculated from the WBB and the FP indicating an overestimation of these parameters in the WBB. We observed significant differences in the path lengths between FP and WBB in most conditions. However, significant differences were not found for the majority of the other features. We observed the same significant differences between the HS and MS populations across the two measurement systems. Validity and reliability were moderate-to-high for all the analyzed features. Both the FP and WBB trained classifier showed similar classification performance (>80%) when discriminating between HS and MS. Conclusions: Our results support the observation that the WBB, although not suitable for obtaining absolute measures, could be successfully used in comparative analysis of different populations
The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature
Summary of background data: The analysis of centre of pressure (COP) excursions is used as an index of postural stability in standing. Conflicting data have been reported over the past 20 years regarding the reliability of COP measures and no standard procedure for COP measure use in study design has been established. Search methods: Six online databases (January 1980 to February 2009) were systematically searched followed by a manual search of retrieved papers. Results: Thirty-two papers met the inclusion criteria. The majority of the papers (26/32, 81.3%) demonstrated acceptable reliability. While COP mean velocity (mVel) demonstrated variable but generally good reliability throughout the different studies (r= 0.32-0.94), no single measurement of COP appeared significantly more reliable than the others. Regarding data acquisition duration, a minimum of 90 s is required to reach acceptable reliability for most COP parameters. This review further suggests that while eyes closed readings may show slightly higher reliability coefficients, both eyes open and closed setups allow acceptable readings under the described conditions (r≥0.75). Also averaging the results of three to five repetitions on firm surface is necessary to obtain acceptable reliability. A sampling frequency of 100. Hz with a cut-off frequency of 10. Hz is also recommended. No final conclusion regarding the feet position could be reached. Conclusions: The studies reviewed show that bipedal static COP measures may be used as a reliable tool for investigating general postural stability and balance performance under specific conditions. Recommendations for maximizing the reliability of COP data are provided
Comparison of Ankle Proprioception Between Pregnant and Non Pregnant Women
Pregnant women report falls especially during their third trimester. Physiological changes along with ligament laxity can affect the joint proprioception in this population. This study was conducted to compare the ankle proprioception between pregnant and non pregnant women. Thirty pregnant and 30 non pregnant women were included in the study and the position of ankles were recorded by a digital camera placed 60 cms away from the feet of the subject. UTHSCSA Image tool software version 3.0. was used to measure the difference between the initial and the final angle. The median repositioning error in the pregnant group was 11.6 (7.6, 12.4) degrees and the median repositioning error in the non-pregnant group was 4.2 (2.1, 6.3) degrees. There was a statistically significant difference in ankle joint proprioception between pregnant and non pregnant women
On the detection of elderly equilibrium degradation using multivariate-EMD
International audienceThe aim of this paper is to provide a new methodology for the detection of an increased risk of falling in community-dwelling elderly. A new extended method of the empirical mode decomposition (EMD) called multivariate-EMD is employed in the proposed solution. This method will be mainly used to analyze the stabilogram center of pressure (COP) time series. In this paper, we describe also the remote non-invasive assessment method, which is suitable for static and dynamic balance. Balance was assessed using a miniature force plate, while gait was assessed using wireless sensors placed in a corridor of the home. The experimental results show the effectiveness of this indicator to identify the differences in standing posture between different groups of population
Biomechanics
Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists
Dynamic Parameters of Balance Which Correlate to Elderly Persons with a History of Falls
Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; p<0.05), while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects' COP measures from the young adult cohort were weighted to establish a balance score (“B-score”) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly “non-fallers” had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001). A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention
Mechanisms of interpersonal sway synchrony and stability
Here we explain the neural and mechanical mechanisms responsible for synchronizing sway and improving postural control during physical contact with another standing person. Postural control processes were modelled using an inverted pendulum under continuous feedback control. Interpersonal interactions were simulated either by coupling the sensory feedback loops or by physically coupling the pendulums with a damped spring. These simulations precisely recreated the timing and magnitude of sway interactions observed empirically. Effects of firmly grasping another person's shoulder were explained entirely by the mechanical linkage. This contrasted with light touch and/or visual contact, which were explained by a sensory weighting phenomenon; each person's estimate of upright was based on a weighted combination of veridical sensory feedback combined with a small contribution from their partner. Under these circumstances, the model predicted reductions in sway even without the need to distinguish between self and partner motion. Our findings explain the seemingly paradoxical observation that touching a swaying person can improve postural control.This work was supported by two BBSRC grants (BB/100579X/1 and an Industry Interchange Award)
- …
