1,503,381 research outputs found

    Spontaneous decompactification

    Full text link
    Positive vacuum energy together with extra dimensions of space imply that our four-dimensional Universe is unstable, generically to decompactification of the extra dimensions. Either quantum tunneling or thermal fluctuations carry one past a barrier into the decompactifying regime. We give an overview of this process, and examine the subsequent expansion into the higher- dimensional geometry. This is governed by certain fixed-point solutions of the evolution equations, which are studied for both positive and negative spatial curvature. In the case where there is a higher-dimensional cosmological constant, we also outline a possible mechanism for compactification to a four-dimensional de Sitter cosmology.Comment: 27 pages, 5 figures, harvmac. v2: refs added, minor notation change

    Spontaneous Combustion

    Get PDF

    Commentary: Spontaneous Breasts

    Get PDF

    Spontaneous CP Violation

    Get PDF
    In this talk I begin with some general discussion of the history of CP violation, then move on to aspects of the aspon model including the production of new particles at LHC, implications for B decay, generalized Cabibbo mixing and a reevaluation of kaon CP violation. Finally there is a summary.Comment: 5 pages Latex. Talk at Tropical Conference on Particles Physics and Cosmology. San Juan, Puerto Rico. April 1-7, 199

    Controlled spontaneous emission

    Full text link
    The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.Comment: 25 pages including 11 figure

    Damped Bloch oscillations of cold atoms in optical lattices

    Full text link
    The paper studies Bloch oscillations of cold neutral atoms in the optical lattice. The effect of spontaneous emission on the dynamics of the system is analyzed both analytically and numerically. The spontaneous emission is shown to cause (i) the decay of Bloch oscillations with the decrement given by the rate of spontaneous emission and (ii) the diffusive spreading of the atoms with a diffusion coefficient depending on {\em both} the rate of spontaneous emission and the Bloch frequency.Comment: 10 pages, 8 figure

    Universal spatiotemporal dynamics of spontaneous superfluidity breakdown in the presence of synthetic gauge fields

    Full text link
    According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous vortex generation. Our study provides a general way to explore and understand the spontaneous superfluidity breakdown in CPTs from a single-well dispersion to a double-well one, such as, BECs in synthetic gauge fields, spin-orbit coupled BECs, and BECs in shaken optical lattices.Comment: accepted for publication in Phys. Rev.

    Spontaneous Magnon Decays

    Full text link
    A theoretical overview of the phenomenon of spontaneous magnon decays in quantum antiferromagnets is presented. The intrinsic zero-temperature damping of magnons in quantum spin systems is a fascinating many-body effect, which has recently attracted significant attention in view of its possible observation in neutron-scattering experiments. An introduction to the theory of magnon interactions and a discussion of necessary symmetry and kinematic conditions for spontaneous decays are provided. Various parallels with the decays of anharmonic phonons and excitations in superfluid 4He are extensively used. Three principal cases of spontaneous magnon decays are considered: field-induced decays in Heisenberg antiferromagnets, zero-field decays in spiral antiferromagnets, and triplon decays in quantum-disordered magnets. Analytical results are compared with available numerical data and prospective materials for experimental observation of the decay-related effects are briefly discussed.Comment: v3.0, asymptotically close to the published versio
    corecore