220,773 research outputs found
Examination of the Circle Spline Routine
The Circle Spline routine is currently being used for generating both two and three dimensional spline curves. It was developed for use in ESCHER, a mesh generating routine written to provide a computationally simple and efficient method for building meshes along curved surfaces. Circle Spline is a parametric linear blending spline. Because many computerized machining operations involve circular shapes, the Circle Spline is well suited for both the design and manufacturing processes and shows promise as an alternative to the spline methods currently supported by the Initial Graphics Specification (IGES)
Adaptive Smoothing for Trajectory Reconstruction
Trajectory reconstruction is the process of inferring the path of a moving
object between successive observations. In this paper, we propose a smoothing
spline -- which we name the V-spline -- that incorporates position and velocity
information and a penalty term that controls acceleration. We introduce a
particular adaptive V-spline designed to control the impact of irregularly
sampled observations and noisy velocity measurements. A cross-validation scheme
for estimating the V-spline parameters is given and we detail the performance
of the V-spline on four particularly challenging test datasets. Finally, an
application of the V-spline to vehicle trajectory reconstruction in two
dimensions is given, in which the penalty term is allowed to further depend on
known operational characteristics of the vehicle.Comment: 25 pages, submitte
A rational cubic spline with tension
A rational cubic spline curve is described which has tension control parameters for manipulating the shape of the curve. The spline is presented in both interpolatory and rational B-spline forms, and the behaviour of the resulting representations is analysed with respect to variation of the control parameters
Asymptotics for penalized additive B-spline regression
This paper is concerned with asymptotic theory for penalized spline estimator
in bivariate additive model. The focus of this paper is put upon the penalized
spline estimator obtained by the backfitting algorithm. The convergence of the
algorithm as well as the uniqueness of its solution are shown. The asymptotic
bias and variance of penalized spline estimator are derived by an efficient use
of the asymptotic results for the penalized spline estimator in marginal
univariate model. Asymptotic normality of estimator is also developed, by which
an approximate confidence interval can be obtained. Some numerical experiments
confirming theoretical results are provided.Comment: 24 pages, 6 figure
Rational-spline approximation with automatic tension adjustment
An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline
Volumetric Untrimming: Precise decomposition of trimmed trivariates into tensor products
3D objects, modeled using Computer Aided Geometric Design tools, are
traditionally represented using a boundary representation (B-rep), and
typically use spline functions to parameterize these boundary surfaces.
However, recent development in physical analysis, in isogeometric analysis
(IGA) in specific, necessitates a volumetric parametrization of the interior of
the object. IGA is performed directly by integrating over the spline spaces of
the volumetric spline representation of the object. Typically, tensor-product
B-spline trivariates are used to parameterize the volumetric domain. A general
3D object, that can be modeled in contemporary B-rep CAD tools, is typically
represented using trimmed B-spline surfaces. In order to capture the generality
of the contemporary B-rep modeling space, while supporting IGA needs, Massarwi
and Elber (2016) proposed the use of trimmed trivariates volumetric elements.
However, the use of trimmed geometry makes the integration process more
difficult since integration over trimmed B-spline basis functions is a highly
challenging task. In this work, we propose an algorithm that precisely
decomposes a trimmed B-spline trivariate into a set of (singular only on the
boundary) tensor-product B-spline trivariates, that can be utilized to simplify
the integration process in IGA. The trimmed B-spline trivariate is first
subdivided into a set of trimmed B\'ezier trivariates, at all its internal
knots. Then, each trimmed B\'ezier trivariate, is decomposed into a set of
mutually exclusive tensor-product B-spline trivariates, that precisely cover
the entire trimmed domain. This process, denoted untrimming, can be performed
in either the Euclidean space or the parametric space of the trivariate. We
present examples on complex trimmed trivariates' based geometry, and we
demonstrate the effectiveness of the method by applying IGA over the
(untrimmed) results.Comment: 18 pages, 32 figures. Contribution accepted in International
Conference on Geometric Modeling and Processing (GMP 2019
- …
